相关习题
 0  210727  210735  210741  210745  210751  210753  210757  210763  210765  210771  210777  210781  210783  210787  210793  210795  210801  210805  210807  210811  210813  210817  210819  210821  210822  210823  210825  210826  210827  210829  210831  210835  210837  210841  210843  210847  210853  210855  210861  210865  210867  210871  210877  210883  210885  210891  210895  210897  210903  210907  210913  210921  266669 

科目: 来源: 题型:

已知向量
m
=(cosωx,1),
n
=(
3
,sinωx)(ω>0),函数f(x)=
m
n
,且f(x)图象上一个最高点为P(
π
12
,2),与P最近的一个最低点的坐标为(
12
,-2).
(1)求函数f(x)的解析式;
(2)设a为常数,判断方程f(x)=a在区间[0,
π
2
]上的解的个数;
(3)在锐角△ABC中,若cos(
π
3
-B)=1,求f(A)的取值范围.

查看答案和解析>>

科目: 来源: 题型:

等比数列{an}(an>0,n∈N*)中,公比q∈(0,1),a1a5+2a3a5+a2a8=25,且2是a3与a5的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn
①当n为何值时,
S1
1
+
S2
2
+…+
Sn
n
有最大值,并求出最大值;
②当n≥2时,比较Sn与bn的大小.

查看答案和解析>>

科目: 来源: 题型:

在四棱锥P-ABCD中,四边形ABCD是平行四边形,M,N分别是AB,PC的中点,
(1)求证:MN∥平面PAD;
(2)若PA=PC且PD=PB,求证平面PAC⊥平面ABCD.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}的前n项和Sn满足an+1=Sn+n+1(n∈N*),且a2,a3+2,a4成等差数列.
(1)求a1
(2)求数列{an}的通项公式;
(3)证明:
n
2
-
1
3
a1
a2
+
a2
a3
+…
an
an+1
n
2
(n∈N*).

查看答案和解析>>

科目: 来源: 题型:

某厂计划生产甲、乙两种产品,甲产品售价50千元/件,乙产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,该厂能获得A种原料120吨,B种原料50吨.问生产甲、乙两种产品各多少件时,能使销售总收入最大?最大总收入为多少?

查看答案和解析>>

科目: 来源: 题型:

已知圆C的方程是x2+y2-2x-4y+m=0
(1)若圆C的半径为2,求m的值;
(2)若圆C与直线l:x+2y-4=0相交于P,Q两点,且|PQ|=
4
5
5
,求m的值;
(3)在(2)的条件小,从圆C外一点M(a,b)向圆做切线MT,T为切点,且|MT|=|MO|(O为原点),求|MO|的最小值.

查看答案和解析>>

科目: 来源: 题型:

在一次数学测验后,教师对选答题的选题情况进行了统计,如表:(单位:人)
几何证明选讲 坐标系与参数方程 不等式选讲 合计
男同学 12 4 6 22
女同学 0 8 12 20
合计 12 12 18 42
在统计结果中,如果把《几何证明选讲》和《坐标系与参数方程》称为几何类,把《不等式选讲》称为代数类,请列出如下2×2列表:(单位:人)
几何类 代数类 总计
男同学
女同学
总计
据此判断是否有95%的把握认为选做“几何类”或“代数类”与性别有关?

查看答案和解析>>

科目: 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(1)求证:DE∥平面PBC;
(2)求证:AB⊥PE.

查看答案和解析>>

科目: 来源: 题型:

在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

已知圆C的圆心在直线2x+y=0上,且圆C与直线x+y=1切于点M(2,-1),求圆的标准方程.

查看答案和解析>>

同步练习册答案