相关习题
 0  210886  210894  210900  210904  210910  210912  210916  210922  210924  210930  210936  210940  210942  210946  210952  210954  210960  210964  210966  210970  210972  210976  210978  210980  210981  210982  210984  210985  210986  210988  210990  210994  210996  211000  211002  211006  211012  211014  211020  211024  211026  211030  211036  211042  211044  211050  211054  211056  211062  211066  211072  211080  266669 

科目: 来源: 题型:

已知二阶矩阵M=
a1
0b
有特征值λ1=2及对应的一个特征向量
e1
=
1
1

(Ⅰ)求矩阵M;
(Ⅱ)若
a
=
2
1
,求M10
a

查看答案和解析>>

科目: 来源: 题型:

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 不喜爱打篮球 合计
男生 5
女生 10
合计 50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
3
5

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A1,A2,A3还喜欢打羽毛球,B1,B2还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目: 来源: 题型:

已知点M在椭圆
x2
a2
+
y2
b2
=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F.若圆M与y轴相交于A,B两点,且△ABM是边长为2的正三角形.
(1)求椭圆的方程和圆M的方程.
(2)若点D的坐标为(0,3),M、N是椭圆上的两个动点,且
DM
DN
,求实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
ln(1+x)
x

(1)当x>0时,证明:f(x)>
2
x+2

(2)当x>-1且x≠0时,不等式f(x)<
1+kx
1+x
恒成立,求实数k的值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=2sin2x+2
3
sinxcosx-1
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最小值及相应x的值.

查看答案和解析>>

科目: 来源: 题型:

在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,面积S△ABC=6.
(1)求△ABC的三边的长a,b,c;
(2)设P是△ABC(不含边界)内的一点,P到三边AC、BC、AB的距离分别是x、y、z且
AP
=
AC
|
AC
|
+
AB
|
AB
|

①写出x、y、z所满足的等量关系;
②求
2
x
+
1
y
的最小值.

查看答案和解析>>

科目: 来源: 题型:

已知复数z=(a2-4)+(a+2)i(a∈R)
(Ⅰ)若z为纯虚数,求实数a的值;
(Ⅱ)若z在复平面上对应的点在直线x+2y+1=0上,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:

某集团投资兴建了甲、乙两个企业,2012年年底该集团从甲企业获得利润160万元,从乙企业获得利润369万元.以后每年上交的利润是:甲企业为上一年利润的1.5倍,而乙企业则为上一年利润的
2
3
.若以2012年为第一年计算.
(1)该集团从上述两个企业获得利润最少的一年是那一年,最少利润是多少?
(2)试估算2020年底,该集团从上述两个企业获得利润能否突破4050万元?

查看答案和解析>>

科目: 来源: 题型:

已知等差数列{an}中,a2=5,a6=13.
(1)求等差数列的通项公式an
(2)设bn=
2
n(an+1)
,求数列{bn}的前n项和Sn
(3)令cn=(n+1)Sn•3n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:

设f(x)=
1
3
x3-(1+a)x2+4ax+24a,其中a∈R.
1)若曲线y=f(x)过p(3,f(3))处的切线与直线y=x平行,求a的值;
2)若当x≥0,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案