相关习题
 0  211002  211010  211016  211020  211026  211028  211032  211038  211040  211046  211052  211056  211058  211062  211068  211070  211076  211080  211082  211086  211088  211092  211094  211096  211097  211098  211100  211101  211102  211104  211106  211110  211112  211116  211118  211122  211128  211130  211136  211140  211142  211146  211152  211158  211160  211166  211170  211172  211178  211182  211188  211196  266669 

科目: 来源: 题型:

设函数f(x)=x-(x+1)ln(x+1)(x>-1)
(Ⅰ)求f(x)的最大值;
(Ⅱ)证明:当n>m>1时,(1+n)m<(1+m)n
(Ⅲ)证明:当n>2013,且x1,x2,x3,…,xn∈R+,x1+x2+x3+…+xn=1时,(
x12 
1+x1
+
x22
1+x2
+
x32
1+x3
+…+
xn2
1+xn
 
1
n
>(
1
2014
 
1
2013

查看答案和解析>>

科目: 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)求证:DM∥平面PCB;
(Ⅲ)求平面PAD与平面PBC所成锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

已知函数y=f(x)(x∈R)不恒为零,且对于任意实数x1,x2,都有f(x1x2)=x1f(x2)+x2f(x1).若f(x)是以3为周期的周期函数,在区间(-6,6)内方程f(x)=0有且只有15个根,并且最大的根是x=5,求方程f(x)=0在区间(-6,6)内所有的根.

查看答案和解析>>

科目: 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,且满足b2+c2-a2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若a=
3
,求bc最大值.

查看答案和解析>>

科目: 来源: 题型:

如图,正六边形ABCDEF中,已知
AB
=
a
AF
=
b
,试用
a
b
表示
BC
CD
AD
BE

查看答案和解析>>

科目: 来源: 题型:

四棱锥P-ABCD中,PA⊥底面ABCD,PA=AB=AD=
1
2
CD,AB∥CD,∠ADC=90°.
(1)在侧棱PC上是否存在一点Q,使BQ∥面PAD?说明理由.
(2)求PB与面PCD所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

△ABC中,a、b、c分别是角A、B、C的对边,已知b2+c2=a2+bc,
AC
AB
=4,求S△ABC

查看答案和解析>>

科目: 来源: 题型:

如图1在梯形PBCE中,PB=2BC=4,CE=3,A是线段PB上一点,AD∥BC,现将四边形PADE沿AD折起,使得平面PADE⊥平面ABCD,连接PC,CE,得到如图2所示的空间图形,已知F是PC的中点,EF∥平面ABCD.
(Ⅰ)求DE的长;
(Ⅱ)求点A到平面PCE的距离.

查看答案和解析>>

科目: 来源: 题型:

某家庭打算用10年的时间储蓄20万元购置一套商品房,为此每年应存入银行额数相同的专款.假设年利率为4%,按复利计算,问每年应存入银行多少钱?

查看答案和解析>>

科目: 来源: 题型:

已知OPQ是半径为1,圆心角为2θ(θ为定值)的扇形,A是扇形弧上的动点,四边形ABCD是扇形内的内接矩形,记∠AOP=α(0<α<θ).
(1)用α表示矩形ABCD的面积S;
(2)若θ=
π
6
,求当α取何值时,矩形面积S最大?并求出这个最大面积.

查看答案和解析>>

同步练习册答案