相关习题
 0  211042  211050  211056  211060  211066  211068  211072  211078  211080  211086  211092  211096  211098  211102  211108  211110  211116  211120  211122  211126  211128  211132  211134  211136  211137  211138  211140  211141  211142  211144  211146  211150  211152  211156  211158  211162  211168  211170  211176  211180  211182  211186  211192  211198  211200  211206  211210  211212  211218  211222  211228  211236  266669 

科目: 来源: 题型:

已知数列{an}中,a1=2,且an+1=3an+8n,求数列{an}的通项公式.

查看答案和解析>>

科目: 来源: 题型:

国家标准规定:轻型汽车的氮氧化物排放量不得超过80mg/km.根据这个标准,检测单位从某出租车公司运营的A、B两种型号的出租车中分别抽取6辆,对其氮氧化物的排放量进行检测,检测结果记录如下:(单位:mg/km)
A 85 80 85 60 90 80
B 70 85 95 x 75 65
由于表格被污损,数据x看不清,统计员只记得A、B两种出租车的氮氧化物排放量的平均值相等.
(1)求表格中x的值;
(2)从被检测的6辆B种型号的出租车中任取3辆,记事件A:至少有两辆出租车氮氧化物排放量未超过80mg/km,求事件A的概率.

查看答案和解析>>

科目: 来源: 题型:

从一批草莓中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) [80,85) [85,90) [90,95) [95,100)
频数(个) 10 50 20 15
(Ⅰ) 根据频数分布表计算草莓的重量在[90,95)的频率;
(Ⅱ) 用分层抽样的方法从重量在[80,85)和[95,100)的草莓中共抽取5个,其中重量在[80,85]的有几个?
(Ⅲ) 在(Ⅱ)中抽出的5个草莓中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.

查看答案和解析>>

科目: 来源: 题型:

已知x+2y=6,求2x+4y的最小值.

查看答案和解析>>

科目: 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分别是CC1,BC的中点,点P在线段A1B1上,且
A1P
A 1B1

(1)证明:无论λ取何值,总有AM⊥PN;
(2)当λ=
1
2
时,求直线PN与平面ABC所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=(1+x)α的定义域是[-1,+∞),其中常数α>0.
(1)若α>1,求y=f(x)的过原点的切线方程.
(2)当α>2时,求最大实数A,使不等式f(x)>1+αx+Ax2对x>0恒成立.
(3)证明当α>1时,对任何n∈N*,有1<
1
n
n+1
k=2
((
k-1
k
α+
α
k
)<α.

查看答案和解析>>

科目: 来源: 题型:

求满足下列条件的直线l的方程:
(1)倾斜角为
π
4
,与y轴的交点为(0,2);
(2)与坐标轴的交点为(-5,0),(0,4).

查看答案和解析>>

科目: 来源: 题型:

在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥平面ABC,∠ACB=90°,D为BC中点.
(Ⅰ)求证:BC⊥AA1
(Ⅱ)求证:A1C∥平面AB1D;
(Ⅲ)若AC=AA1=BC=2,∠A1AC=60°,求三棱锥A1-ABC的体积.

查看答案和解析>>

科目: 来源: 题型:

某高校从参加今年自主招生考试的学生中,随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号 分组 频数 频率
第一组 [230,235) 8 0.16
第二组 [235,240) 0.24
第三组 [240,245) 15
第四组 [245,250) 10 0.20
第五组 [250,255) 5 0.10
合计 50 1.00
(l)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三组、第四组、第五组中用分层抽样法,抽取6名学生进行第二轮考核,分别求第三、第四、第五各组参加考核的人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,其中有ξ名第三组的,求ξ的数学期望.

查看答案和解析>>

科目: 来源: 题型:

等差数列{an}中,a2=4,S6=42.
(1)求数列的通项公式an
(2)设bn=
2
(n+1)an
,Tn=b1+b2+…+bn,求T10

查看答案和解析>>

同步练习册答案