相关习题
 0  211076  211084  211090  211094  211100  211102  211106  211112  211114  211120  211126  211130  211132  211136  211142  211144  211150  211154  211156  211160  211162  211166  211168  211170  211171  211172  211174  211175  211176  211178  211180  211184  211186  211190  211192  211196  211202  211204  211210  211214  211216  211220  211226  211232  211234  211240  211244  211246  211252  211256  211262  211270  266669 

科目: 来源: 题型:

如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形沿对角线AC折起,使得平面ABC⊥平面ADC,得到三棱锥B-ACD,M是棱BC上的一点.

(Ⅰ)若OM⊥BC,求证:BC⊥平面OMD;
(Ⅱ)若OM∥平面ABD,求三棱锥M-ABD的体积.

查看答案和解析>>

科目: 来源: 题型:

四川一所学校高三年级有10名同学参加2014年北约自主招生,学校对这10名同学进行了辅导,并进行了两次模拟模拟考试,检测成绩的茎叶图如图所示.
(1)比较这10名同学预测卷和押题卷的平均分大小;
(2)若从押题卷的成绩中随机抽取两名成绩不低于112分的同学,求成绩为118分的同学被抽中的概率.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}满足an+1=3an+8n+14(n∈N*),其中a1=14
(Ⅰ)设an=bn-4n-9,求证{bn}是等比数列,并求{an}的通项公式;
(Ⅱ)求证:对任意的n∈N*,a2n能被64整除.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}的奇数项是首项为1公差为d的等差数列,偶数项是首项为2公比为q的等比数列.数列{an}前n项和为Sn,且满足S3=a4,a3+a5=2+a4
(1)求d和q的值;
(2)求数列{an}的通项公式和前n项和为Sn

查看答案和解析>>

科目: 来源: 题型:

已知关于x的方程x2+2
a
x-b+4=0(*),
(Ⅰ)两次抛掷一枚质地均匀的骰子,第一、二次得到的点数分别记为a,b,求使方程(*)有解的概率;
(Ⅱ)在区间[0,6]上分别任意取两个值作为a,b的值,求使方程(*)有解的概率.

查看答案和解析>>

科目: 来源: 题型:

已知{an}为单调递增的等比数列,且a2+a5=18,a3•a4=32,{bn}是首项为2,公差为d的等差数列,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)当且仅当2≤n≤4,n∈N*,Sn≥4+d•log2an2成立,求d的取值范围.

查看答案和解析>>

科目: 来源: 题型:

“根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在[20,80)(单位:mg/100mL)之间,属于酒后驾车,血液酒精浓度在80mg/100mL(含80)以上时,属醉酒驾车.”某市交警在该市一交通岗前设点对过往的车辆进行抽查,经过一晚的抽查,共查出酒后驾车者60名,图甲是用酒精测试仪对这60名酒后驾车者血液中酒精浓度进行检测后依所得结果画出的频率分布直方图
(1)若血液酒精浓度在[50,60)和[60,70)的分别有9人和6人,请补全频率分布直方图.图乙的程序框图是对这60名酒后驾车者血液的酒精浓度做进一步的统计,求出图乙输出的S的值,并说明S的统计意义;(图乙中数据mi与fi分别表示图甲中各组的组中点值及频率)
(2)本次行动中,吴、李两位先生都被酒精测试仪测得酒精浓度属于70~90mg/100mL的范围,但他俩坚称没喝那么多,是测试仪不准,交警大队队长决定在被酒精测试仪测得酒精浓度属于70~90mg/100mL范围的酒后驾车者中随机抽出2人抽血检验,设ξ为吴、李两位先生被抽中的人数,求ξ的分布列,并求吴、李两位先生至少有1人被抽中的概率.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=|x-a|(a>0),且不等式f(x)≥|x+1|的解集为{x|x≤
1
2
}.
(Ⅰ)求a的值;
(Ⅱ)设函数g(x)=f(x)+|2x+1|,若不等式|2m+3|+|m-3|≥|m|•g(x)对任意m∈R且m≠0恒成立,求x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.
(Ⅰ)根据直方图估计这个开学季内市场需求量x的众数和中位数(四舍五入取整数);
(Ⅱ)将y表示为x的函数;
(Ⅲ)根据直方图估计利润y不少于4800元的概率.

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系中,点A(-1,0),B(1,0),动点P满足
PA
PB
=2|
OP
|2-2,
(1)求动点P的轨迹方程;
(2)由点C(-2,0)向(1)中的动点P所形成的曲线M引割线l,交曲线于E、F,若
BE
BF
∈[
3
4
,2],点Q在曲线M上,且
OE
+
OF
=t
OQ
,求t范围.

查看答案和解析>>

同步练习册答案