相关习题
 0  211185  211193  211199  211203  211209  211211  211215  211221  211223  211229  211235  211239  211241  211245  211251  211253  211259  211263  211265  211269  211271  211275  211277  211279  211280  211281  211283  211284  211285  211287  211289  211293  211295  211299  211301  211305  211311  211313  211319  211323  211325  211329  211335  211341  211343  211349  211353  211355  211361  211365  211371  211379  266669 

科目: 来源: 题型:

已知函数f(x)=sin2x+2
3
sinxcosx+sin(x+
π
4
)sin(x-
π
4
),x∈R.
(Ⅰ)求f(x)的最小正周期和单调增区间;
(Ⅱ)若x=x0(0≤x0
π
2
)为f(x)的一个零点,求cos2x0的值.

查看答案和解析>>

科目: 来源: 题型:

某科考试中,从甲、乙两个班级各随机抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.
(1)分别计算甲、乙两班10名同学成绩的平均数,并估计哪班的成绩更高;
(2)在所抽取的20人中的及格同学中,按分层抽样的方法抽取5人,求甲班恰好抽到一名成绩为100分以上的同学的概率.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.
(Ⅰ)确定a,b的值;
(Ⅱ)若c=3,判断f(x)的单调性;
(Ⅲ)若f(x)有极值,求c的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=xcosx-sinx,x∈[0,
π
2
]
(1)求证:f(x)≤0;
(2)若a<
sinx
x
<b对x∈(0,
π
2
)上恒成立,求a的最大值与b的最小值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=sin2x+cos2x.
(1)求函数f(x)的最小正周期;
(2)若f(
α
2
+
π
8
)=
3
2
5
,求cos2a的值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x4+ax3+bx+c(a,b,c∈R),g(x)=f′(x)且g(0)=g(1).
(Ⅰ)求实数a的值;
(Ⅱ)若任意x1、x2∈[0,1]且x2>x1,求证:|g(x2)-g(x1)|<8|x2-x1|;
(Ⅲ)当b≤
16
3
9
时,请判断曲线f(x)的所有切线中,斜率λ为正数时切线的条数,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=ax2+ex(a∈R)有且仅有两个极值点x1,x2(x1<x2).
(1)求实数a的取值范围;
(2)是否存在实数a满足f(x1)=e 
2
3
x1?如存在,求f(x)的极大值;如不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ex-e-x-2x.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值;
(Ⅲ)已知1.4142<
2
<1.4143,估计ln2的近似值(精确到0.001).

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R),设直线l1,l2分别是曲线y=f(x)的两条不同的切线.
(1)若函数f(x)为奇函数,且当x=1时f(x)有极小值为-4.
(i)求a,b,c,d的值;
(ii)若直线l3亦与曲线y=f(x)相切,且三条不同的直线l1,l2,l3交于点G(m,4),求实数m的取值范围;
(2)若直线l1∥l2,直线l1与曲线y=f(x)切于点B且交曲线y=f(x)于点D,直线l2和与曲线y=f(x)切于点C且交曲线y=f(x)于点A,记点A,B,C,D的横坐标分别为xA,xB,xC,xD,求(xA-xB):(xB-xC):(xC-xD)的值.

查看答案和解析>>

科目: 来源: 题型:

A,B,C三人进行乒乓球比赛,优胜者按以下规则决出:
(Ⅰ)三人中两人进行比赛,胜出者与剩下的一人进行比赛,直到出现两连胜者,则此两连胜者呗判定为优胜者,比赛结束;
(Ⅱ)在每次比赛中,无平局,必须决出胜负.
已知A胜B的概率是
2
3
,C胜A的概率是
1
2
,C胜B的概率是
1
3
,第一场比赛在A与C中进行
(1)分别求出第二场、第三场、第四场比赛后C为优胜者的概率;
(2)记第3n-1场比赛后C为优胜者的概率为pn,第3n场比赛后C为优胜者的概率为qn,第3n+1场比赛后C为优胜者的概率为rn,n∈N*试求pn,qn,rn

查看答案和解析>>

同步练习册答案