相关习题
 0  211206  211214  211220  211224  211230  211232  211236  211242  211244  211250  211256  211260  211262  211266  211272  211274  211280  211284  211286  211290  211292  211296  211298  211300  211301  211302  211304  211305  211306  211308  211310  211314  211316  211320  211322  211326  211332  211334  211340  211344  211346  211350  211356  211362  211364  211370  211374  211376  211382  211386  211392  211400  266669 

科目: 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=
3
2
|F1F2|.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.

查看答案和解析>>

科目: 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上.
(Ⅰ)求异面直线D1E与A1D所成的角;
(Ⅱ)若二面角D1-EC-D的大小为45°,求点B到平面D1EC的距离.

查看答案和解析>>

科目: 来源: 题型:

如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.
(1)证明:CF⊥平面ADF;
(2)求二面角D-AF-E的余弦值.

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=lnx+
m
x
,m∈R.
(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;
(Ⅱ)讨论函数g(x)=f′(x)-
x
3
零点的个数;
(Ⅲ)若对任意b>a>0,
f(b)-f(a)
b-a
<1恒成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

在△ABC中,内角A,B,C对边的边长分别是a,b,c,2
3
sin
A
2
cos
A
2
+2cos2
A
2
=3.
(1)求角A;
(2)若a=
3
,sin(B+C)+sin(B-C)=2sin2C,cosC≠0,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*
(Ⅰ)证明:数列{bn}为等比数列;
(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-
1
ln2
,求数列{anbn2}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2<ex
(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex

查看答案和解析>>

科目: 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上的一点,且其纵坐标为4,|PF|=4.
(1)求抛物线的方程;
(2)设点A(x1,y1),B(x2,y2)是抛物线上异于点P的两点,∠APB的角平分线与x轴垂直,且线段AB的中垂线与x轴交于点M,求
|MF|
|AB|
的最小值.

查看答案和解析>>

科目: 来源: 题型:

如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.
(1)求证:AB⊥PD;
(2)若∠BPC=90°,PB=
2
,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

如图,已知四棱锥,底面ABCD为菱形,PA⊥平面ABCD,PA=AB=2,∠ABC=60°,E是CD的中点,F为PC上一点,满足FC=2PF.
(1)证明:AE⊥PB;
(2)求直线AF与平面PCD所成角的正弦值.

查看答案和解析>>

同步练习册答案