相关习题
 0  211219  211227  211233  211237  211243  211245  211249  211255  211257  211263  211269  211273  211275  211279  211285  211287  211293  211297  211299  211303  211305  211309  211311  211313  211314  211315  211317  211318  211319  211321  211323  211327  211329  211333  211335  211339  211345  211347  211353  211357  211359  211363  211369  211375  211377  211383  211387  211389  211395  211399  211405  211413  266669 

科目: 来源: 题型:

盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.
(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;
(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).

查看答案和解析>>

科目: 来源: 题型:

如图,曲线C由上半椭圆C1
y2
a2
+
x2
b2
=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为
3
2

(Ⅰ)求a,b的值;
(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

设F1,F2分别是C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为
3
4
,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目: 来源: 题型:

在等比数列{an}中,a2=3,a5=81.
(Ⅰ)求an
(Ⅱ)设bn=log3an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:

在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上,且
OP
=m
AB
+n
AC 
(m,n∈R)
(Ⅰ)若m=n=
2
3
,求|
OP
|;
(Ⅱ)用x,y表示m-n,并求m-n的最大值.

查看答案和解析>>

科目: 来源: 题型:

π为圆周率,e=2.71828…为自然对数的底数.
(Ⅰ)求函数f(x)=
lnx
x
的单调区间;
(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.

查看答案和解析>>

科目: 来源: 题型:

在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
作物产量(kg)300500
概率0.50.5
作物市场价格(元/kg)610
概率0.40.6
(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

查看答案和解析>>

科目: 来源: 题型:

△ABC的内角A、B、C所对的边分别为a,b,c.
(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.

查看答案和解析>>

科目: 来源: 题型:

如图,O为坐标原点,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2
x2
a2
-
y2
b2
=1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2=
3
2
,且|F2F4|=
3
-1.
(Ⅰ)求C1、C2的方程;
(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:
①顾客所获的奖励额为60元的概率;
②顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.

查看答案和解析>>

同步练习册答案