相关习题
 0  211238  211246  211252  211256  211262  211264  211268  211274  211276  211282  211288  211292  211294  211298  211304  211306  211312  211316  211318  211322  211324  211328  211330  211332  211333  211334  211336  211337  211338  211340  211342  211346  211348  211352  211354  211358  211364  211366  211372  211376  211378  211382  211388  211394  211396  211402  211406  211408  211414  211418  211424  211432  266669 

科目: 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F、P、Q、M、N分别是棱AB、AD、DD1、BB1、A1B1、A1D1的中点,求证:
(Ⅰ)直线BC1∥平面EFPQ;
(Ⅱ)直线AC1⊥平面PQMN.

查看答案和解析>>

科目: 来源: 题型:

从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228
(1)在表格中作出这些数据的频率分布直方图;

(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.
(1)求证:点A(1,2),B(-1,0)被直线x+y-1=0分隔;
(2)若直线y=kx是曲线x2-4y2=1的分隔线,求实数k的取值范围;
(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为曲线E的分隔线.

查看答案和解析>>

科目: 来源: 题型:

海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区ABC
数量50150100
(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;
(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

科目: 来源: 题型:

20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目: 来源: 题型:

已知{an}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.
(1)求{an}的通项公式;
(2)求数列{
an
2n
}的前n项和.

查看答案和解析>>

科目: 来源: 题型:

某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300名学生每周平均体育运动时间的样本数据(单位:小时).
(Ⅰ)应收集多少位女生的样本数据?
(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],估计该校学生每周平均体育运动时间超过4小时的概率;
(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.
(Ⅰ)证明:an+2-an
(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=
π
3
,M为BC上一点,且BM=
1
2

(Ⅰ)证明:BC⊥平面POM;
(Ⅱ)若MP⊥AP,求四棱锥P-ABMO的体积.

查看答案和解析>>

科目: 来源: 题型:

已知α∈(
π
2
,π),sinα=
5
5

(1)求sin(
π
4
+α)的值;
(2)求cos(
6
-2α)的值.

查看答案和解析>>

同步练习册答案