相关习题
 0  211346  211354  211360  211364  211370  211372  211376  211382  211384  211390  211396  211400  211402  211406  211412  211414  211420  211424  211426  211430  211432  211436  211438  211440  211441  211442  211444  211445  211446  211448  211450  211454  211456  211460  211462  211466  211472  211474  211480  211484  211486  211490  211496  211502  211504  211510  211514  211516  211522  211526  211532  211540  266669 

科目: 来源: 题型:

复数z=(1-i)a2-3a+2+i(a∈R),
(1)若z=
.
z
,求|z|;
(2)若在复平面内复数z对应的点在第一象限,求a的范围.

查看答案和解析>>

科目: 来源: 题型:

为了了解高一年级学生的身高情况,某校按10%的比列对全校800名高一年级学生按性别进行抽样调查,得到如下频数分布表:
表1:男生身高频数分布表
身高(cm) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)
频数 2 5 14 13 4 2
表2:女生身高频数分布表
身高(cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180)
频数 2 12 16 6 3 1
(1)分别估计高一年级男生和女生的平均身高;
(2)在样本中,从身高180cm以上的男生中任选2人,求至少有一人身高在185cm以上的概率.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=cos(2x-
π
3
)+2sin2x,x∈R.
(1)求函数f(x)的最小正周期及对称轴方程;
(2)当x∈[0,
π
2
]时,求函数f(x)的最大值和最小值及相应的x值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=lnx,g(x)=(x-a)2+(lnx-a)2
(Ⅰ)求函数f(x)在A(1,0)处的切线方程;
(Ⅱ)若g′(x)在[1,+∞)上单调递增,求实数a的取值范围;
(Ⅲ)证明:g(x)≥
1
2

查看答案和解析>>

科目: 来源: 题型:

三角形ABC中,三内角为A、B、C,
a
=(
3
cosA,sinA),
b
=(cosB,
3
sinB),
c
=(1,-1).
(1)若
a
c
=1,求角A的大小;
(2)若
a
b
,求当A-B取最大时,A的值.

查看答案和解析>>

科目: 来源: 题型:

曲线y=lnx-1在x=1处的切线方程为
 

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}中,a1=1,an=2an-1+2n+3,求{an}的通项公式.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ln|x+1|-ax2
(Ⅰ)若a=
2
3
且函数f(x)的定义域为(-1,+∞),求函数f(x)的单调递增区间;
(Ⅱ)若a=0,求证f(x)≤|x+1|-1;
(Ⅲ)若函数y=f(x)的图象在原点O处的切线为l,试探究:是否存在实数a,使得函数y=f(x)的图象上存在点在直线l的上方?若存在,试求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知f(x)=9x-2×3x+4,x∈[0,2]
(1)设t=3x,x∈[0,2],求t的最大值与最小值;
(2)求f(x)的最大值与最小值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=2
3
sinxcosx+2sin2x-1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[-
12
π
6
]时,求函数f(x)的最大值.

查看答案和解析>>

同步练习册答案