相关习题
 0  211410  211418  211424  211428  211434  211436  211440  211446  211448  211454  211460  211464  211466  211470  211476  211478  211484  211488  211490  211494  211496  211500  211502  211504  211505  211506  211508  211509  211510  211512  211514  211518  211520  211524  211526  211530  211536  211538  211544  211548  211550  211554  211560  211566  211568  211574  211578  211580  211586  211590  211596  211604  266669 

科目: 来源: 题型:

在一个六角形体育馆的一角MAN内,用长为a的围栏设置一个运动器材储存区域(如图所示),已知∠A=120°,B是墙角线AM上的一点,C是墙角线AN上的一点.
(1)若BC=a=20,求储存区域面积的最大值;
(2)若AB=AC=10,在折线MBCN内选一点D,使BD+DC=20,求四边形储存区域DBAC的最大面积.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=aln(2x+1)+bx+1.
(Ⅰ)若函数y=f(x)在x=1处取得极值,且曲线y=f(x)在点(0,f(0))处的切线与直线2x+y-3=0平行,求a的值;
(Ⅱ)若b=
1
2
,试讨论函数y=f(x)的单调性.
(Ⅲ)若对定义域内的任意x,都有f(x)≥(b-
1
2
)x+
3
4
成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(Ⅰ)求函数f(x)单调区间;
(Ⅱ)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

如图,已知PE是⊙O的切线,切点为E,PAB,PCD都是⊙O的割线,且PAB经过圆心O,过点P直线与直线BC,BD分别交于点M,N,且PE2=PM•PN.
(Ⅰ)求证D,C,M,N四点共圆;
(Ⅱ)求证PB⊥PN.

查看答案和解析>>

科目: 来源: 题型:

若f(x)>0对任意的x∈R,函数f(x)=ex-ax-1(e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间及最小值;
(Ⅱ)若f(x)>0对任意的x∈R恒成立,求实数a的值;
(Ⅲ)证明:ln(1+
2
2×3
)+ln(1+
4
3×5
)+ln(1+
8
5×9
)+…+ln[1+
2n
(2n-1+1)(2n+1)
]<1(n∈N*)

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=|2x+1|+|2x-1|
(Ⅰ)求不等式f(x)≤12的解集M;
(Ⅱ)当a,b∈M时,证明:3|a+b|≤|9+ab|.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ex-x(e为自然对数的底数).
(1)求f(x)的最小值;
(2)设不等式f(x)>ax的解集为P,若M={x|
1
2
≤x≤2}
,且M∩P≠∅,求实数a的取值范围
(3)已知n∈N*,且Sn=
n
0
f(x)dx
,是否存在等差数列{an}和首项为f(1)公比大于0的等比数列{bn},使得Sn=An+Bn(其中An,Bn分别是数列{an},{bn}的前n项和)?若存在,请求出数列{an},{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线C:x2=y,直线l与抛物线C交于A、B不同两点,且
OA
+
OB
=(p,6).
(1)求抛物线的焦点坐标和准线方程;
(2)设直线m为线段AB的中垂线,请判断直线m是否恒过定点?若是,请求出定点坐标;若不是,请说明理由;
(3)记点A、B在x轴上的射影分别为A1、B1,记曲线E是以A1B1为直径的圆,当直线l与曲线E的相离时,求p的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=2cosx•sin(
π
6
+x)(x∈R)
(1)求f(x)在[0,π]上的单调增区间;
(2)△ABC中,f(C)=1,且边长c=2,求△ABC面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=cos(2x-
π
3
)+cos2x-1.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[0,
π
2
],求f(x)的最大值及相应的x值.

查看答案和解析>>

同步练习册答案