相关习题
 0  211432  211440  211446  211450  211456  211458  211462  211468  211470  211476  211482  211486  211488  211492  211498  211500  211506  211510  211512  211516  211518  211522  211524  211526  211527  211528  211530  211531  211532  211534  211536  211540  211542  211546  211548  211552  211558  211560  211566  211570  211572  211576  211582  211588  211590  211596  211600  211602  211608  211612  211618  211626  266669 

科目: 来源: 题型:

已知tanα=-
3
4

(1)求tan2α的值;
(2)若α是第二象限角,求sin(2α+
π
6
).

查看答案和解析>>

科目: 来源: 题型:

记集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y).则点M落在区域Ω2的概率为
 

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=1+lnx+
k
x

(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)>k在x∈(1,+∞)时恒成立,求整数k的最大值.

查看答案和解析>>

科目: 来源: 题型:

某人参加一档综艺节目,需依次回答6道题闯关,每关答一题,若回答正确,则他可进入下一关;若回答错误,则他离开此节目,按规定,他有一次求助亲友团的机会,若回答正确,也被视为答案正确,否则视为错误,6道题目随机排列,已知他能答出其中3题,亲友团能答对其余3题中的2题,设他能闯过的关数为随机变量X.
(Ⅰ)求他恰好闯过一关的概率;
(Ⅱ)求X的分布列与期望.

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=
1
3
x3-x2+ax-a
(a∈R),且x=-1是函数f(x)的一个极值点.
(Ⅰ)求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调区间与极值;
(Ⅲ)若方程f(x)=k有三个实数根,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ax2-1nx,x∈(0,e],其中e是自然对数的底数,a∈R.
(1)当a=1时,求函数f(x)的单调区间与极值;
(2)对于任意的x∈(0,e],f(x)≥3恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,CD=PD,∠ADP=90°,∠CDP=120°,E,F,G分别为PB,BC,AP的中点.
(Ⅰ)求证:平面EFG∥平面PCD;
(Ⅱ)求二面角D-EF-B的平面角的大小.

查看答案和解析>>

科目: 来源: 题型:

设抛物线E:x2=2y,圆N:x2+(y-4)2=1
(1)若斜率为1,且过圆心N的直线l与抛物线E相交于P,Q两点,求|PQ|;
(2)点M是抛物线E上异于原点的一点,过点M作圆N的两条切线,切点分别为A,B,与抛物线E交于D,C两点,若四边形ABCD为梯形,求点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

太原市启动重污染天气Ⅱ级应急响应,大力发展公共交通.为了调查市民乘公交车的候车情况,交通部门从在某站台等车的60名候车乘客中随机抽取15人,按照他们的候车时间(单位:分钟)作为样本分成6组,如下表所示:
组别
候车时间 [0,3) [3,6) [6,9) [9,12) [12,15) [15,18)
人数 2 5 3 2 2 1
(Ⅰ)为了线路合理设置,估计这60名乘客中候车时间不少于12分钟的人数.
(Ⅱ)若从上表第三、四组的5人中随机抽取2人做进一步的问卷调查,求抽到的2人恰好来自不同组的概率.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x-1+
a
ex
(a∈R,e为自然对数的底数).
(1)当a≠0时,直线l:y=kx-1是曲线y=f(x)的切线,求k关于a的函数关系式.
(2)求函数=f(x)的极值;
(3)当a=1.时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的取值范围.

查看答案和解析>>

同步练习册答案