相关习题
 0  211435  211443  211449  211453  211459  211461  211465  211471  211473  211479  211485  211489  211491  211495  211501  211503  211509  211513  211515  211519  211521  211525  211527  211529  211530  211531  211533  211534  211535  211537  211539  211543  211545  211549  211551  211555  211561  211563  211569  211573  211575  211579  211585  211591  211593  211599  211603  211605  211611  211615  211621  211629  266669 

科目: 来源: 题型:

已知函数f(x)=x2g(x)=
1
2
λf′(x)+sinx
在[-1,1]上的减函数.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若g(x)≤λ+3sin1在x∈[-1,1]上恒成立,求λ的取值范围;
(Ⅲ)关于x的方程lnf(1+x)=2x-m(x∈[
1
e
-1,e-1]
)有两个根 (无理数e=2.71828…),求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

交通银行向市场推出甲、乙两种理财产品,若投资甲、乙两种理财产品分别为p,q万元,到期后获得的收益分别为
1
10
p,
2
5
lnq万元,且要求每种产品的投资起点都不低于1万元.现在张老师把10万元全部用于投资这两种理财产品.
(Ⅰ)若张老师投资了乙种理财产品为8万元,求到期后张老师获得的总收益;
(Ⅱ)请你设计一个投资方案,使得到期后张老师获得的总收益最大,并求出其最大总收益.(参考数据:ln2≈0.7)

查看答案和解析>>

科目: 来源: 题型:

执行如图的程序框图,如果输入的N的值是8,那么,那么输出的p的值是
 

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=2lnx-ax+a(a∈R).
(1)如果曲线y=f(x)在(1,0)处的切线恰与直线y=x平行,求a的值;
(2)讨论f(x)的单调性;
(3)若f(x)≤0恒成立,证明:当0<x1<x2时,
f(x2)-f(x1)
x2-x1
<2(
1
x2
-1).

查看答案和解析>>

科目: 来源: 题型:

已知△ABC的三角A,B,C对应的边分别为a,b,c,且三边a,b,c成等差数列,b=4,C=2A.
(1)求cosA;
(2)求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
x(1+alnx)
x-1
(x>1)

(Ⅰ)若a≥0,讨论g(x)=(x-1)2f′(x)的单调性;
(Ⅱ)当a=1时,若f(x)>n恒成立,求满足条件的正整数n的值;
(Ⅲ)求证:(1+1×2)•(1+2×3)…[1+n(n+1)]>e2n-
5
2

查看答案和解析>>

科目: 来源: 题型:

在图的几何体中,面ABC∥面DEFG,∠BAC=∠EDG=120°,四边形 ABED 是矩形,四边形ADGC 是直角梯形,∠ADG=90°,四边形 DEFG 是梯形,EF∥DG,AB=AC=AD=EF=1,DG=2.
(1)求证:FG⊥面ADF;
(2)求二面角F-GC-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:

执行如图的程序框图,如果输入的N的值是6,那么,那么输出的p的值是
 

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ax+x2-xlna(a>0且a≠1).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)a>l,证明:当x∈(0,+∞)时,f(x)>f(-x);
(Ⅲ)若对任意x1,x2,x1≠x2,且当f(x1)=f(x2)时,有x1+x2<0,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知a、b、c是正数,求证:
2a+1
+
2b+1
+
2c+1
<a+b+c+3.

查看答案和解析>>

同步练习册答案