相关习题
 0  211461  211469  211475  211479  211485  211487  211491  211497  211499  211505  211511  211515  211517  211521  211527  211529  211535  211539  211541  211545  211547  211551  211553  211555  211556  211557  211559  211560  211561  211563  211565  211569  211571  211575  211577  211581  211587  211589  211595  211599  211601  211605  211611  211617  211619  211625  211629  211631  211637  211641  211647  211655  266669 

科目: 来源: 题型:

已知f(x)=ax3+bx2+c的图象经过点(0,1),且在x=1处的切线方程是y=-2x+1
(1)求y=f(x)的解析式;
(2)求y=f(x)的单调递增区间.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
x2+a
x
,且f(1)=2
(1)判断并证明函数f(x)在其定义域上的奇偶性;
(2)探究函数f(x)在(0,+∞)的单调性;
(3)求函数f(x)在区间[
1
3
,4]上的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知公差不为0的等差数列{an}的前n项和为Sn,S9=a37+24,且a1,a4,a13成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{
1
Sn
}的前n项和.

查看答案和解析>>

科目: 来源: 题型:

(1)证明两角差的余弦公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;
(2)若cosα=-
3
5
,α∈(0,π),求cos(α-
π
4
)的值.

查看答案和解析>>

科目: 来源: 题型:

用记号
n
i=0
ai表示a0+a1+a2+a3+…+an,bn=
n
i=0
a2i,其中i∈N,n∈N*
(1)设
2n
k=1
(1+x)k=a0+a1x+a2x2+…+a2n-1x2n-1+a2nx2n(x∈R),求b2的值;
(2)若a0,a1,a2,…,an成等差数列,求证:
n
i=0
(aiC
 
i
n
)=(a0+an)•2n-1
(3)在条件(1)下,记dn=1+
n
i=1
[(-1)ibiC
 
i
n
],计算
lim
n→∞
dn
bn
的值.

查看答案和解析>>

科目: 来源: 题型:

某地近年来持续干旱,为倡导节约用水,该地采用了阶梯水价计费方法,具体为:每户每月用水量不超过a吨的每吨2元;超过a吨而不超过(a+2)吨的,超出a吨的部分每吨4元;超过(a+2)吨的,超出(a+2)吨的部分每吨6元.
(1)写出每户每月用水量x(吨)与支付费y(元)的函数关系;
(2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表:
月用水量x(吨) 3 4 5 6 7
频数 1 3 3 3 2
将12个月记录的各用水量的频率视为概率,若取a=4,用Y表示去年的月用水费用,求Y的分布列和数学期望(精确到元);
(3)今年干旱形势仍然严峻,该地政府决定适当下调a的值(3<a<4),小明家响应政府号召节约用水,已知他家前3个月的月平均水费为11元,并且前3个月用水量x的分布列为:
月用水量x(吨) 4 6 3
P
1
3
1
3
1
3
请你求出今年调整的a值.

查看答案和解析>>

科目: 来源: 题型:

函数f(x)=x2+2x-1.
(Ⅰ)若定义域为[-2,3],求f(x)的值域;
(Ⅱ)若f(x)的值域为[-2,2],且定义域为[a,b],求b-a的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知α∈(0,
π
4
),β∈(0,π),且tan(α-β)=
1
2
,tanβ=-
1
7
,求tan(2α-β)的值及角2α-β.

查看答案和解析>>

科目: 来源: 题型:

袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.
(1)求第二次取球后才“停止取球”的概率;
(2)求停止取球时所有被记下的编号之和为5的概率.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
1
2
ax2-lnx,a∈R+
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间[1,e]的最小值为1,求a的值.

查看答案和解析>>

同步练习册答案