相关习题
 0  211512  211520  211526  211530  211536  211538  211542  211548  211550  211556  211562  211566  211568  211572  211578  211580  211586  211590  211592  211596  211598  211602  211604  211606  211607  211608  211610  211611  211612  211614  211616  211620  211622  211626  211628  211632  211638  211640  211646  211650  211652  211656  211662  211668  211670  211676  211680  211682  211688  211692  211698  211706  266669 

科目: 来源: 题型:

设函数f(x)=lnx-ax+
1-a
x
-1

(1)当0<a<
1
2
时,求函数f(x)的单调区间.
(2)当a=
1
3
时设函数g(x)=x2-2bx-
5
12
若对于?x1∈(0,e],?x2∈[0,1],使得f(x1)≥g(x2)成立,求实数b的取值范围(e是自然对数的底,e<
3
+1
).

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x3-3ax(a∈R)
(1)当a=1时,求f(x)的极小值;
(2)若直线x+y+m=0对任意m∈R的都不是曲线y=f(x)的切线,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知二次函数y=f(x)的顶点坐标为(-
3
2
,49),且方程f(x)=0的两个实根之差等于7,求此二次函数的解析式.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=1-cosx(0<x<
π
2
).数列{an}满足:0<a1
π
2
,an+1=f(an),n∈N*
(Ⅰ)求证:0<an
π
2
(n∈N*);
(Ⅱ)求证:数列{an}是递减数列.

查看答案和解析>>

科目: 来源: 题型:

岳阳市临港新区自2009年6月8日开港来,吸引了一批投资过亿元的现代工业和物流储运企业落户.根据规划,2025年新港将全部建成13个泊位,从2014年(第一年)开始对其中某个子港口今后10年的发展规划,有如下两种方案:
方案甲:按现状进行运营.据测算,每年可收入800万元,但由于港口淤积日益严重,从明年开始需投资进行清淤,第一年投资50万元,以后逐年递增20万元.
方案乙:从2014年起开始投资4000万元进港口改造,以彻底根治港口淤积并提高吞吐能力.港口改造需用时4年,在此期间边改造边运营.据测算,开始改造后港口第一年的收入为400万元,在以后的4年中,每年收入都比上一年增长50%,而后各年的收入都稳定在第5年的水平上.
(Ⅰ)至少经过多少年,方案乙能收回投资(累计总收益为正数)?
(Ⅱ)到哪一年,方案乙的累计总收益超过方案甲?(收益=收入-投资)

查看答案和解析>>

科目: 来源: 题型:

如图,△ABC的三个内角分别为A,B,C,cosA=
1
3
,cosB=
2
2
3
.CD是∠ACB的角平分线.
(1)求角C的大小;
(2)求∠ADC的余弦值.

查看答案和解析>>

科目: 来源: 题型:

二次函数y=f(x)的图象的一部分如图所示
(1)根据图象写出f(x)在区间[-1,4]上的值域;
(2)根据图象求y=f(x)的解析式;
(3)当k∈R时,试探讨关于x的方程f(x)-k=0在(-1,4]上的解的个数.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=3sin(ωx+φ)(ω>0,0<φ<
π
2
)的最小正周期为π,且其图象经过点(
π
3
,0).
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(
x
2
+
π
12
),α,β∈(0,π),且g(α)=1,g(β)=
3
2
4
,求g(α-β)的值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ax+
4
x

(Ⅰ)从区间(-2,2)内任取一个实数a,设事件A={函数y=f(x)-2在区间(0,+∞)上有两个不同的零点},求事件A发生的概率;
(Ⅱ)若连续掷两次骰子(骰子六个面上标注的点数分别为1,2,3,4,5,6)得到的点数分别为a和b,记事件B={f(x)>b2在x∈(0,+∞)恒成立},求事件B发生的概率.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ax3+bx2+(c-3a-2b)x+d的图象如图所示.
(1)求c,d的值;
(2)若函数f(x)在x=2处的切线方程为3x+y-11=0,求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案