相关习题
 0  211514  211522  211528  211532  211538  211540  211544  211550  211552  211558  211564  211568  211570  211574  211580  211582  211588  211592  211594  211598  211600  211604  211606  211608  211609  211610  211612  211613  211614  211616  211618  211622  211624  211628  211630  211634  211640  211642  211648  211652  211654  211658  211664  211670  211672  211678  211682  211684  211690  211694  211700  211708  266669 

科目: 来源: 题型:

在等差数列{an}中,a1=1,a2+a4=6.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)将数列{an}的前4项抽去其中一项后,剩下的三项构成公比大于1的等比数列{bn}的前三项,记数列{bn}前n项的和为Sn,若对任意n∈N*,使得Sn≥λ成立,求实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:

(1)求曲线y=
2x
x2+1
在点(1,1)处的切线方程;
(2)运动曲线方程为S=
t-1
t2
+2t2,求t=3时的速度.

查看答案和解析>>

科目: 来源: 题型:

已知向量
a
=(2sinx,sinx),
b
=(sinx,2
3
cosx),函数f(x)=
a
b

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且2acosB=bcosC+ccosB,若对任意满足条件的A,不等式f(A)+m>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=(mx+n)e-x(m,n∈R,e为自然数)
①若函数f(x)在点(1,f(1))处的切线方程为x+ey-3=0,试确定函数f(x)的单调区间.
②当n=-1,m∈R时,若对于任意x∈[
1
2
,1]都有f(x)≥x恒成立,求实数m的最小值.

查看答案和解析>>

科目: 来源: 题型:

自驾游从A地到B地有甲乙两条线路,甲线路是A-C-D-B,乙线路是A-E-F-G-H-B,其中CD段、EF段、GH段都是易堵车路段,假设这三条路段堵车与否相互独立,这三条路段的堵车概率及平均堵车时间如表1所示.
表1:
  CD段 EF段 GH段
堵车概率 x y
1
4
平均堵车时间
(单位:小时)
a 2 1
经调查发现,堵车概率x在(
2
3
,1)上变化,y在(0,
1
2
)上变化.
在不堵车的情况下,走甲线路需汽油费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计CD段平均堵车时间,调查了100名走甲线路的司机,得到表2数据.
表2:
堵车时间(单位:小时) 频数
[0,1] 8
(1,2] 6
(2,3] 38
(3,4] 24
(4,5] 24
(Ⅰ)求CD段平均堵车时间a的值;
(Ⅱ)若只考虑所花汽油费期望值的大小,为了节约,求选择走甲线路的概率.

查看答案和解析>>

科目: 来源: 题型:

若函数f(x)=
a•2x-a-1
2x-1
为奇函数.
(1)确定实数a的值;
(2)求函数的定义域和值域.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x-
1
x
-alnx

(1)若函数f(x)在点(1,f(1))处的切线与圆x2+y2-2y=0相切,求a的值;
(2)当x∈(1,+∞)时,函数f(x)的图象恒在坐标轴x轴的上方,试求出a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=2
2
sin
π
8
xcos
π
8
x+2
2
cos2
π
8
x-
2
,x∈R.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若函数f(x)图象上的两点P,Q的横坐标依次为2,4,O为坐标原点,求△OPQ的外接圆的面积.

查看答案和解析>>

科目: 来源: 题型:

如图,点A是单位圆与x轴正半轴的交点,点B(-
1
2
3
2
).
(Ⅰ)若∠AOB=α,求sin2α的值;
(Ⅱ)设点P为单位圆上的动点,点Q满足
OQ
=
OA
+
OP
,∠AOP=2θ(
π
6
≤θ≤
π
2
),f(θ)=
OB
OQ
,求f(θ)的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知a≥0,b≥0,c≥0,求证:
a2+ab+b2
+
b2+bc+c2
≥a+b+c.

查看答案和解析>>

同步练习册答案