相关习题
 0  211518  211526  211532  211536  211542  211544  211548  211554  211556  211562  211568  211572  211574  211578  211584  211586  211592  211596  211598  211602  211604  211608  211610  211612  211613  211614  211616  211617  211618  211620  211622  211626  211628  211632  211634  211638  211644  211646  211652  211656  211658  211662  211668  211674  211676  211682  211686  211688  211694  211698  211704  211712  266669 

科目: 来源: 题型:

已知曲线y=x2,则过点A(3,5)的切线方程为
 

查看答案和解析>>

科目: 来源: 题型:

已知变量x,y满足约束条件
2x+3y-11≤0
x+4y-8≥0
x-y+2≥0
若目标函数z=x-ay(a>0)的最大值为1,则a
 

查看答案和解析>>

科目: 来源: 题型:

曲线y=x3+x2-1在点P(-1,-1)处的切线方程是
 

查看答案和解析>>

科目: 来源: 题型:

设△ABC的内角A、B、C的对边分别为a、b、c,若tanC=
sinA+sinB
cosA+cosB
且c=
3
2
,求△ABC的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知{an}为等差数列,Sn为其前n项和,且a3=9,S6=60.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,bn+1=abn,求数列{bn}的前n项和Tn
(Ⅲ)若
7
m
35
1
2n+3
(1+
1
a1
)(1+
1
a2
)…(1+
1
an-1
)对n≥2且n∈N*恒成立,求实数m的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知f(x)=2
3
cos2x+2sin(π-x)cos(-x)+a-
3
(x∈R,a∈R,a为常数).
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)先将函数y=f(x)的图象向右平移
π
6
个单位,然后将得到函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到y=g(x)的图象,若当x∈[
π
6
π
3
],g(x)的最小值为2,求a的值及函数y=g(x)的解析式.

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=ex-ax-a.
(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值;
(2)设g(x)=f(x)+
a
ex
,且A(x1,y1)、B(x1,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意a≤-1,直线AB的斜率恒大于常数m,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40千米的B处,乙厂到河岸的垂足D与A相距50千米,两厂要在此岸边AD之间合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,若CD=x千米,设总的水管费用为y元,如图所示,
(Ⅰ)写出y关于x的函数表达式;
(Ⅱ)问供水站C建在岸边何处才能使水管费用最省?

查看答案和解析>>

科目: 来源: 题型:

某技术部门对工程师进行达标定级考核,需要经过两轮测试,每轮测试的成绩在9.5分及以上的定位该轮测试通过,只有通过第一轮测试的人员才能进行第二轮测试,两轮测试的过程相互独立,并规定
①两轮测试均通过的一定为一级工程师;
②仅通过第一轮测试,而第二轮测试没通过的定为二级工程师;
③第一轮测试没通过的不予定级.
已知甲、乙、丙三位工程师通过第一轮测试的概率分别为
1
3
2
3
2
3
;通过第二轮测试的概率均为
1
2

(1)求经过本次考核,甲被定位以及工程师,乙被定位二级工程师的概率;
(2)求经过本次考核,甲、乙、丙三位工程师中恰有两位被定位以及工程师的概率;
(3)设甲、乙、丙三位工程师中被定位一级工程师的人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6,8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.
(Ⅰ)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?
(Ⅱ)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(Ⅲ)从(Ⅱ)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.

查看答案和解析>>

同步练习册答案