相关习题
 0  211541  211549  211555  211559  211565  211567  211571  211577  211579  211585  211591  211595  211597  211601  211607  211609  211615  211619  211621  211625  211627  211631  211633  211635  211636  211637  211639  211640  211641  211643  211645  211649  211651  211655  211657  211661  211667  211669  211675  211679  211681  211685  211691  211697  211699  211705  211709  211711  211717  211721  211727  211735  266669 

科目: 来源: 题型:

定义函数y=f(x),x∈D(D为定义域)图象上的点到坐标原点的距离为函数的y=f(x),x∈D的模.若模存在最大值,则称之为函数y=f(x),x∈D的长距;若模存在最小值,则称之为函数y=f(x),x∈D的短距.
(1)分别判断函数f1(x)=
1
x
与f2(x)=
-x2-4x+5
是否存在长距与短距,若存在,请求出;
(2)求证:指数函数y=ax(a>0,a≠1)的短距小于1;
(3)对于任意x∈[1,2]是否存在实数a,使得函数f(x)=
2x|x-a|
的短距不小于2且长距不大于4.若存在,请求出a的取值范围;不存在,则说明理由?

查看答案和解析>>

科目: 来源: 题型:

定义函数y=f(x),x∈D(D为定义域)图象上的点到坐标原点的距离为函数的y=f(x),x∈D的模.若模存在最大值,则称之为函数y=f(x),x∈D的长距;若模存在最小值,则称之为函数y=f(x),x∈D的短距.
(1)判断函数f1(x)=
1
x
是否存在长距与短距,若存在,请求出;
(2)判断函数f2(x)=
-x2-4x+5
是否存在长距与短距,若存在,请求出;
(3)对于任意x∈[1,2]都存在实数a使得函数f(x)=
2x|x-a|
的短距不小于2,求实数a的取值范围?

查看答案和解析>>

科目: 来源: 题型:

若0<x<1,a>0,b>0.求证:
a2
x
+
b2
1-x
≥(a+b)2

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=(x2+ax)e-x,且f(x)在x=-1处的切线与直线为ex+y=0平行.
(Ⅰ)求实数a的值,并求f(x)的单调区间;
(Ⅱ)若x≠0时,都有e1+xf(x)<mx2e 
1
z
+e成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(1-x)≤2;
(Ⅱ)若a<0,求证:f(ax)-af(x)≥f(a).

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
2
sin(2x+
π
4
).
(1)求它的振幅、周期、初相;
(2)在所给坐标系中用五点法作出它在区间[
π
8
8
]上的图象.
(3)说明y=sinx的图象可由y=
2
sin(2x+
π
4
)的图象经过怎样的变换而得到.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}的前n项和为Sn=n2+1,求数列{an}的通项公式,并判断{an}是不是等差数列.

查看答案和解析>>

科目: 来源: 题型:

PM2.5是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米至75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,北方城市环保局从该市市区2013年全年每天的PM2.5监测数据中随机的抽取20天的数据作为样本,发现空气质量为一级的有4天,为二级的有10天,超标的有6天.
(1)从这20天的日均PM2.5监测数据中,随机抽出三天数据,求恰有一天空气质量达到一级的概率;
(2)从这20天的数据中任取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列和数学期望;
(3)根据这20天的PM2.5日均值来估计一年的空气质量情况,则一年(按365天计算)中平均有多少天的空气质量达到一级或二级.

查看答案和解析>>

科目: 来源: 题型:

设a∈R,e为自然对数的底数,函数f(x)=
(-2x3+3ax2+6ax-4a2-6a)•ex,x≤1
[(6a-1)lnx+x+
a
x
+15a]•e,x>1

(Ⅰ)当a=0时,求f(x)在x=e处的切线方程;
(Ⅱ)当a<-1时,是否存在a使f(x)在[a,-a]上为减函数,若存在,求实数a的范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

在直角坐标系xOy中,曲线Cl的参数方程为
x=
2
cosα
y=
2
sinα
(α为参数),以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+
π
4
)=4
2

(Ⅰ)求曲线Cl的普通方程与曲线C2的直角坐标方程;
(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的直角坐标.

查看答案和解析>>

同步练习册答案