相关习题
 0  211576  211584  211590  211594  211600  211602  211606  211612  211614  211620  211626  211630  211632  211636  211642  211644  211650  211654  211656  211660  211662  211666  211668  211670  211671  211672  211674  211675  211676  211678  211680  211684  211686  211690  211692  211696  211702  211704  211710  211714  211716  211720  211726  211732  211734  211740  211744  211746  211752  211756  211762  211770  266669 

科目: 来源: 题型:

已知定义在R上的奇函数f(x)=ax3+bx2+cx+d(a≠0)满足以下条件:
①在x=1时有极值;
②曲线y=f(x)在点(0,f(0))处的切线与直线x-3y+2=0垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设直线l1:y=kx与函数f(x)的图象有三个不同的交点A,B,C,且|AB|=|BC|=5,求直线l的斜率k的值;
(Ⅲ)设g(x)=6lnx-m,若存在x∈[
1
e
,e],使g(x)<f(x),求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

设a为实数,函数f(x)=x2+|x-a|+1,x∈R.
(1)若函数y=f(x)是偶函数,求实数a的值;
(2)若a=2,求f(x)的最小值;
(3)对于函数y=m(x),在定义域内给定区间[a,b],如果存在x0(a<x0<b),满足m(x0)=
m(b)-m(a)
b-a
,则称函数m(x)是区间[a,b]上的“平均值函数”,x0是它的一个“均值点”.如函数y=x2是[-1,1]上的平均值函数,0就是它的均值点.现有函数g(x)=-x2+mx+1是区间[-1,1]上的平均值函数,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知等差数列{an}中,a1=1,前n项和为Sn且满足条件:
S2n
Sn
=
4n+2
n+1
(n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的前n项和为Tn
Tn+1-bn+1
Tn+bn
=1(n∈N*),b1=3,又cn=
2an+1
bn-1
,求数列{cn}的前n项和Wn

查看答案和解析>>

科目: 来源: 题型:

某公司验收一批产品,已知该批产品的包装规格为每箱10件.现随机抽取一箱进行检验,检验方案如下:从中抽取1件进行检验,若是次品,则不再检验并拒收这批产品;若是正品,则再从该箱中抽取1件进行检验,如此继续,至多进行4次检验(每次检验过的产品都不放回),若连续检验的4件产品都是正品,则接收这批产品.锁定抽取的这箱产品中有2件是次品.
(Ⅰ)在第一次检验为正品的条件下,求第二次检验为正品的概率;
(Ⅱ)求这批产品被拒绝的概率;
(Ⅲ)已知每件产品的检验费用为100元,对这批产品作检验所需的费用为X(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

求下列函数的值域,并求出最值.
(1)f(x)=2sin(x+
π
3
),x∈[
π
6
π
2
]
(2)f(x)=2cos2x+5sinx-4.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线y=x2-(2a-1)x+a2-1与x轴的交点为A、B.
(1)求证:点A、B在原点异侧的充要条件为-1<a<1;
(2)根据题意,提出一个与充分条件、必要条件、充要条件相关的问题并作出解答.

查看答案和解析>>

科目: 来源: 题型:

求满足下列条件的曲线方程:
(1)设抛物线的顶点在原点,准线方程为x=-2,求抛物线的方程;
(2)已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的实轴长为4
3
,焦点到渐近线的距离为
3
,求双曲线方程.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an},满足a1=1,an+1=2an+1(n∈N*
(Ⅰ)证明数列{an+1}是等比数列
(Ⅱ)若数列{bn}满足4 b1-142b2-1•4 3b3-1…4 nbn-1=(an+1)n,求数列{bn}的通项公式.

查看答案和解析>>

科目: 来源: 题型:

若二次函数的最大值为8,且自变量取2和-1时的函数值都为-1,求解析式.

查看答案和解析>>

科目: 来源: 题型:

(1)化简
cos(π-a)
sin(
π
2
+a)
sin(2π+a)cos(2π+a).
(2)求值sin2120°+cos180°+tan45°-cos230°+sin210°.

查看答案和解析>>

同步练习册答案