相关习题
 0  211630  211638  211644  211648  211654  211656  211660  211666  211668  211674  211680  211684  211686  211690  211696  211698  211704  211708  211710  211714  211716  211720  211722  211724  211725  211726  211728  211729  211730  211732  211734  211738  211740  211744  211746  211750  211756  211758  211764  211768  211770  211774  211780  211786  211788  211794  211798  211800  211806  211810  211816  211824  266669 

科目: 来源: 题型:

某次运动会甲、乙两名射击运动员成绩如下:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用茎叶图表示甲,乙两个成绩;
(2)根据茎叶图分析甲、乙两人成绩,并估计哪位运动员的成绩比较稳定.

查看答案和解析>>

科目: 来源: 题型:

数列{an}的首项a1=a,an+an+1=3n-54,n∈N*
(1)求数列{an}的通项公式;
(3)设{an}的前n项和为Sn,若Sn的最小值为-243,求a的取值范围?

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=
a
b
,其中向量
a
=(cos2x+1,1),
b
=(1,
3
sin2x+m).
(1)求f(x)的最小正周期;
(2)当x∈[0,
π
6
]时,-4<f(x)<4恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}中,a1=6,an+1+an=3•2n+1,n∈N*
(Ⅰ)设bn=an-2n+1,证明:数列{bn}是等比数列;
(Ⅱ)在数列{an}中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(Ⅲ)若1<r<s且r,s∈N*,求证:使得a1,ar,as成等差数列的点列(r,s)在某一条直线上.

查看答案和解析>>

科目: 来源: 题型:

求过直线x+3y-7=0与已知圆x2+y2+2x-2y-3=0的交点,且在两坐标轴上的四个截距之和为8的圆的方程.

查看答案和解析>>

科目: 来源: 题型:

若数列{an}满足条件:存在正整数k,使得an+k+an-k=2an对一切n∈N*,n>k都成立,则称数列{an}为k级等差数列.
(1)已知数列{an}为2级等差数列,且前四项分别为2,0,4,3,求a8+a9的值;
(2)若an=2n+sinωn(ω为常数),且{an}是3级等差数列,求ω所有可能值的集合,并求ω取最小正值时数列{an}的前3n项和S3n
(3)若{an}既是2级等差数列{an},也是3级等差数列,证明:{an}是等差数列.

查看答案和解析>>

科目: 来源: 题型:

有甲乙丙丁4个人过一座简易木桥,这四个人过桥分别所用的时间是2分钟,4分钟,6钟,8分钟,由于木桥质量原因,桥上最多只能有两个人. 请你设置一个方案,使这4个人在最快的时间过桥,写清步骤,最后算出所需时间.

查看答案和解析>>

科目: 来源: 题型:

已知等比数列{an}满足a3-a2=10,a1a2a3=125.
(Ⅰ)求数列an的前n项和Sn
(Ⅱ)设bn=n(Sn+
5
6
),Tn=b1+b2+b3+…+bn,求Tn

查看答案和解析>>

科目: 来源: 题型:

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(1)如图所示,若
AM
=
1
4
MB
,求直线l的方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

科目: 来源: 题型:

如图,AB是半径为3的⊙O的直径,CD是弦,BA,CD的延长线交于点P,PA=4,PD=5,则∠CBD=
 

查看答案和解析>>

同步练习册答案