相关习题
 0  211680  211688  211694  211698  211704  211706  211710  211716  211718  211724  211730  211734  211736  211740  211746  211748  211754  211758  211760  211764  211766  211770  211772  211774  211775  211776  211778  211779  211780  211782  211784  211788  211790  211794  211796  211800  211806  211808  211814  211818  211820  211824  211830  211836  211838  211844  211848  211850  211856  211860  211866  211874  266669 

科目: 来源: 题型:

在平面直角坐标系xOy中,已知定点F(1,0),点P在y轴上运动,点M在x轴上,点N为平面内的动点,且满足
PM
PF
=0,
PM
+
PN
=0.
(1)求动点N的轨迹C的方程;
(2)设点Q是直线l:x=-1上任意一点,过点Q作轨迹C的两条切线QS,QT,切点分别为S,T,设切线QS,QT的斜率分别为k1,k2,直线QF的斜率为k0,求证:k1+k2=2k0

查看答案和解析>>

科目: 来源: 题型:

在△ABC中,设角A、B、C所对的边分别为a,b,c,且cosA=
2
5
5
,cosB=
3
10
10

(Ⅰ)求角C的大小;
(Ⅱ)若△ABC的面积为1,求abc.

查看答案和解析>>

科目: 来源: 题型:

(1)求值:sin50°(1+
3
tan10°);
(2)已知sin(α+2β)=3sinα,求
tan(α+β)
tanβ
的值.

查看答案和解析>>

科目: 来源: 题型:

任意一个三位数,百位数与个位数相加等于十位数,求证:该三位数能被11整除.

查看答案和解析>>

科目: 来源: 题型:

如图,PA是⊙O的切线,PE过圆心0,AC为⊙O的直径,PC与⊙O相交于B、C两点,连接AB、CD.
(Ⅰ)求证:∠PAD=∠CDE;
(Ⅱ)求证:
PA2
PC•PE
=
BD
AD

查看答案和解析>>

科目: 来源: 题型:

已知F1,F2为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,过椭圆右焦点F2斜率为k(k≠0)的直线l与椭圆C相交于E、F两点,△EFF1的周长为8,且椭圆C与圆x2+y2=3相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A为椭圆的右顶点,直线AE,AF分别交直线x=4于点M,N,线段MN的中点为P,记直线PF2的斜率为k′,求证k•k′为定值.

查看答案和解析>>

科目: 来源: 题型:

(A)如图,△ABC内接圆O,AD平分∠BAC交圆于点D,过点B作圆O的切线交直线AD于点E.
(Ⅰ)求证:∠EBD=∠CBD
(Ⅱ)求证:AB•BE=AE•DC.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),短轴的一个端点为M,
△MF1F2为等边三角形.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点(0,-2)的直线l与椭圆C相交于A,B两点,在直线y=-
1
2
上是否存在点N,使得四边形OANB为矩形?若存在,求出N点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=lnx-
1
2
ax2+bx(a>0)
且f′(1)=0
(1)试用含有a的式子表示b;
(2)若a=1,求函数f(x)的单调区间;
(3)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0)且x1<x0<x2,使得曲线在点Q处的切线l∥P1P2,则称P1P2存在“陪伴切线”.特别地,当x0=
x1+x2
2
时,又称P1P2存在“中值陪伴切线”.试问:在函数f(x)上是否存在两点P1,P2使得它存在“中值陪伴切线”?若存在,求出P1,P2的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.
(Ⅰ)求第七组的频率并估计该校800名男生中身高在180cm以上(含180cm)的人数;
(Ⅱ)从第六组和第八组的男生中随机抽取两名男生,记他们的身高分别为x,y,事件E={|x-y|≤5},求P(E).

查看答案和解析>>

同步练习册答案