相关习题
 0  211683  211691  211697  211701  211707  211709  211713  211719  211721  211727  211733  211737  211739  211743  211749  211751  211757  211761  211763  211767  211769  211773  211775  211777  211778  211779  211781  211782  211783  211785  211787  211791  211793  211797  211799  211803  211809  211811  211817  211821  211823  211827  211833  211839  211841  211847  211851  211853  211859  211863  211869  211877  266669 

科目: 来源: 题型:

在△ABC中,角A,B,C对应的边分别是a,b,c,且a=4
3
,b=3
2
,∠A=2∠B.
(Ⅰ)求cosB的值;
(Ⅱ)求c的值.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(2,0),离心率为
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)斜率为k的直线l经过点M(0,1)且与椭圆C交于不同两点A,B,当点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

数列{an}中,已知a1=2,对n∈N*,恒有an•an+1=2×4n成立.
(1)求证:数列{an}是等比数列;
(2)设bn=a6n-5+a6n-3+a6n-1,求数列{bn}前n项和Sn

查看答案和解析>>

科目: 来源: 题型:

某中学举行了一次“环保知识竞赛”,共有800名学生参加了这次竞赛.从中抽取了部分学生的成绩进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
(1)填充频率分布表的空格;
(2)补全频率分布直方图;
(3)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?
分组 频数 频率
50.5~60.5 6 0.08
60.5~70.5 0.16
70.5~80.5 15
80.5~90.5 24 0.32
90.5~100.5
合计 75

查看答案和解析>>

科目: 来源: 题型:

如图,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现从这六个点中任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.
(1)求S=
3
2
的概率;
(2)求S的分布列及数学期望E(S).

查看答案和解析>>

科目: 来源: 题型:

求定积分
1
-1
f(x)dx,其中f(x)=
sinx-1  (x≤0)
x2   (x>0)

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}和{bn}满足:a1=λ,an+1=
2
3
an+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(1)对任意实数λ,求证:a1,a2,a3不成等比数列;
(2)试判断数列{bn}是否为等比数列,并证明你的结论;
(3)设Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有Sn>-12?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边.已知a=2
3
,A=
π
3

(Ⅰ)若b=2
2
,求角C的大小;
(Ⅱ)若c=2,求边b的长.

查看答案和解析>>

科目: 来源: 题型:

小乐星期六下午从文具超市买了一套立体几何学具,他发现学具袋里有三组长度相等的塑料棒,长度分别为1,
2
,2,而且每组恰有三根,于是想利用它们拼出正三棱锥.设拼出的正三棱锥的侧棱长为l,底面正三角形的边长为s.
(1)若小乐选取l=1,s=
2
,现从该正三棱锥的六条棱中随机选取两条,求这两条棱互相垂直的概率;
(2)若小乐随机地选取l,s,可以拼出m个不同的正三棱锥.设从每个正三棱锥的六条棱中随机选取两条,这两条棱互相垂直的概率为X,请分别写出其相应的X的值(不用写出求解X的计算过程).小乐再从拼出的m个正三棱锥中任选两个,求他所选的两个正三棱锥的X值相同的概率.

查看答案和解析>>

科目: 来源: 题型:

正六棱锥的底边长为4厘米,高为2厘米,求它的侧面积.

查看答案和解析>>

同步练习册答案