相关习题
 0  211688  211696  211702  211706  211712  211714  211718  211724  211726  211732  211738  211742  211744  211748  211754  211756  211762  211766  211768  211772  211774  211778  211780  211782  211783  211784  211786  211787  211788  211790  211792  211796  211798  211802  211804  211808  211814  211816  211822  211826  211828  211832  211838  211844  211846  211852  211856  211858  211864  211868  211874  211882  266669 

科目: 来源: 题型:

已知函数f(x)=
2cos4x-3cos2x+1
cos2x
,求它的定义域和值域,并判断它的奇偶性.

查看答案和解析>>

科目: 来源: 题型:

如图,A、B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个顶点,|AB|=
5
,直线AB的斜率为-
1
2

(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l平行与AB,并与椭圆相交于C、D两点,求△OCD的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)cosx(cosx-
3
sinx)(x∈R)
(Ⅰ)写出f(x)的单调减区间;
(Ⅱ)在△ABC中,A、B、C所对的边分别是a、b、c,若f(A)=0,A∈(0,
π
2
),且(1+
3
)c=2b.求角C.

查看答案和解析>>

科目: 来源: 题型:

如果数列{an}同时满足:(1)各项均不为0,(2)存在常数k,对任意n∈N*,an+12anan+2+k都成立,则称这样的数列{an}为“类等比数列”.由此等比数列必定是“类等比数列”.问:
(1)各项均不为0的等差数列{bn}是否为“类等比数列”?说明理由.
(2)若数列{an}为“类等比数列”,且a1=a,a2=b(a,b为常数),是否存在常数λ,使得an+an+2=λan+1对任意n∈N*都成立?若存在,求出λ;若不存在,请举出反例.
(3)若数列{an}为“类等比数列”,且a1=a,a2=b,k=a2+b2(a,b为常数),求数列{an}的前n项之和Sn;数列{Sn}的前n项之和记为Tn,求T4k-3(k∈N*).

查看答案和解析>>

科目: 来源: 题型:

已知tanα=
3
4
,cos(α+β)=-
7
2
10
,且α∈(0,
π
2
),β∈(-
π
2
π
2
),
(1)求
2cos2
α
2
-sinα-1
2
sin(α+
π
4
)
的值; 
(2)求β的值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=sin2x+2
3
sinxcosx+3cos2x.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)已知f(a)=3,且α∈(0,
π
2
),求α的值.

查看答案和解析>>

科目: 来源: 题型:

已知实数k∈R,且k≠0,e为自然对数的底数,函数f(x)=
k•ex
ex+1
,g(x)=f(x)-x.
(1)如果函数g(x)在R上为减函数,求k的取值范围;
(2)如果k∈(0,4],求证:方程g(x)=0有且有一个根x=x0;且当x>x0时,有x>f(f(x))成立;
(3)定义:①对于闭区间[s,t],称差值t-s为区间[s,t]的长度;②对于函数g(x),如果对任意x1,x2∈[s,t]⊆D(D为函数g(x)的定义域),记h=|g(x2)-g(x1)|,h的最大值称为函数g(x)在区间[s,t]上的“身高”.问:如果k∈(0,4],函数g(x)在哪个长度为2的闭区间上“身高”最“矮”?

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
1
2
cos2x+
3
2
sinx•cosx-
1
4

(Ⅰ)求f(x)的最小正周期和值域;
(Ⅱ)若a是第一象限的角,且f(
a
2
-
π
12
)=
3
4
,求tanα的值.

查看答案和解析>>

科目: 来源: 题型:

已知a∈R,函数f(x)=-a(
3
sin2x+cos2x)+2a+b,当x∈[0,
π
2
]时,f(x)的值域是[-5,1].
(Ⅰ)求常数a,b的值;
(Ⅱ)当a>0时,设g(x)=f(x+
π
2
)(x∈R),求g(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}满足an+1=2an-n+1(n∈N*).
(Ⅰ)若数列{an}是等差数列,求数列{
1
anan+1
}的前n项和Sn
(Ⅱ)证明:数列{an+2}不可能是等比数列.

查看答案和解析>>

同步练习册答案