相关习题
 0  211766  211774  211780  211784  211790  211792  211796  211802  211804  211810  211816  211820  211822  211826  211832  211834  211840  211844  211846  211850  211852  211856  211858  211860  211861  211862  211864  211865  211866  211868  211870  211874  211876  211880  211882  211886  211892  211894  211900  211904  211906  211910  211916  211922  211924  211930  211934  211936  211942  211946  211952  211960  266669 

科目: 来源: 题型:

已知函数f(x)=(2
3
tan2x+1)cos2x+1-2sin2x,x∈[0,
π
2
].
(Ⅰ)求f(x)在[0,
π
2
]的单调区间;
(Ⅱ)若f(x)-m≥0对于任意x∈[0,
π
2
]恒成立,求实数m的最大值.

查看答案和解析>>

科目: 来源: 题型:

某射击测试规则为:每人最多射击3次,击中目标即终止射击,第i次射击击中目标得i(i=1,2,3)分,3次均击中目标得0分.已知某射手每次击中目标的概率为0.8,各次射击结果互不影响.
(Ⅰ)求该射手至少射击两次并且击中目标的概率;
(Ⅱ)记该射手的得分为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=2cos2x+
3
sin2x,x∈R.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)将函数f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的函数h(x)的图象,再将函数h(x)的图象向右平移
π
3
个单位后得到函数g(x)的图象,求函数g(x)的解析式,并求在[0,π]上的值域.

查看答案和解析>>

科目: 来源: 题型:

持续性的雾霾天气严重威胁着人们的身体健康,汽车的尾气排放是造成雾霾天气的重要因素之一.为此,某城市实施了机动车尾号限行,该市报社调查组为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
频数 5 10 15 10 5 5
赞成人数 4 6 9 6 3 4
(Ⅰ)请估计该市公众对“车辆限行”的赞成率和被调查者的年龄平均值;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望;
(Ⅲ)若在这50名被调查者中随机发出20份的调查问卷,记η为所发到的20人中赞成“车辆限行”的人数,求使概率P(η=k)取得最大值的整数k.

查看答案和解析>>

科目: 来源: 题型:

已知cosα=-
3
5
,求sin
α
2
cos
α
2
tan
α
2

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系xOy中,点P到两圆C1:x2+y2-2
3
y+2=0与C2:x2+y2+2
3
y-3=0的圆心的距离之和等于4,设点P的轨迹为C.
(1)求C的方程;
(2)设直线y=kx+1与C交于A,B两点.问k为何值时
OA
OB

查看答案和解析>>

科目: 来源: 题型:

盒中装有5个乒乓球用作比赛,其中2个是旧球,另外3个是新球,新球使用后即成为了旧球.
(Ⅰ)每次比赛从盒中随机抽取1个球使用,使用后放回盒中,求第2次比赛结束后盒内剩余的新球数为2个的概率P;
(Ⅱ)每次比赛从盒中随机抽取2个球使用,使用后放回盒中,设第2次比赛结束后盒内剩余的新球数为X,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

已知一个正三棱锥的侧面都是等腰直角三角形,侧棱长为a,求内切球的体积.

查看答案和解析>>

科目: 来源: 题型:

已知定点F1(-
3
,0),F2
3
,0),动点R在曲线C上运动且保持|RF1|+|RF2|的值不变,曲线C过点T(0,1),
(Ⅰ)求曲线C的方程;
(Ⅱ)M是曲线C上一点,过点M作斜率分别为k1和k2的直线MA,MB交曲线C于A、B两点,若A、B关于原点对称,求k1•k2的值;
(Ⅲ)直线l过点F2,且与曲线C交于PQ,有如下命题p:“当直线l垂直于x轴时,△F1PQ的面积取得最大值”.判断命题p的真假.若是真命题,请给予证明;若是假命题,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:
组别 频数 频率
145.5~149.5 8 0.16
149.5~153.5 6 0.12
153.5~157.5 14 0.28
157.5~161.5 10 0.20
161.5~165.5 8 0.16
165.5~169.5 m n
合计 M N
(1)求出表中字母m、n、M、N所对应的数值;
(2)在给出的直角坐标系中画出频率分布直方图;
(3)估计该校高一女生身高在149.5~165.5cm范围内有多少人?

查看答案和解析>>

同步练习册答案