相关习题
 0  211836  211844  211850  211854  211860  211862  211866  211872  211874  211880  211886  211890  211892  211896  211902  211904  211910  211914  211916  211920  211922  211926  211928  211930  211931  211932  211934  211935  211936  211938  211940  211944  211946  211950  211952  211956  211962  211964  211970  211974  211976  211980  211986  211992  211994  212000  212004  212006  212012  212016  212022  212030  266669 

科目: 来源: 题型:

在四边形ABCD中,AD⊥CD,AD=5,AB=7,∠BDA=60°,∠CBD=15°,求BC长.

查看答案和解析>>

科目: 来源: 题型:

小明打算从A组和B组两组花样滑冰动作中选择一组参加比赛.已知小明选择A组动作的概率是选择B组动作的概率的3倍,若小明选择A组动作并正常发挥可获得10分,没有正常发挥只能获得6分;若小明选择B组动作则一定能正常发挥并获得8分.据平时训练成绩统计,小明能正常发挥A组动作的概率是0.8.
(Ⅰ)求小明选择A组动作的概率;
(Ⅱ)设ξ表示小明比赛时获得的分数,求ξ的分布列与期望.

查看答案和解析>>

科目: 来源: 题型:

某超市进行促销活动,规定消费者消费每满100元可抽奖一次.抽奖规则:从装有三种只有颜色不同的球的袋中随机摸出一球,记下颜色后放回,依颜色分为一、二、三等奖,一等奖奖金15元,二等奖奖金10元,三等奖奖金5元.活动以来,中奖结果统计如图所示.消费者甲购买了238元的商品,准备参加抽奖.以频率作为概率,解答下列各题.
(Ⅰ)求甲恰有一次获得一等奖的概率;
(Ⅱ)求甲获得20元奖金的概率;
(Ⅲ)记甲获得奖金金额为X,求X的分布列及期望EX.

查看答案和解析>>

科目: 来源: 题型:

如图,设抛物线C:y2=2px(p>0)的焦点为F,准线为l,过准线l上一点M(-1,0)且斜率为k的直线l1交抛物线C于A,B两点,线段AB的中点为P,直线PF交抛物线C于D,E两点.
(Ⅰ)求抛物线C的方程及k的取值范围;
(Ⅱ)是否存在k值,使点P是线段DE的中点?若存在,求出k值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

在直角坐标系xOy中,点p是单位圆上位于第一象限的动点,过p作x轴的垂线与射线y=xtanθ(x≥0,0<θ<
π
2
)交于点Q,与x轴交于点M,射线与单位圆交于N,设∠MOP=α,且α∈(0,θ)
(1)若θ=
π
3
,sinα=
3
5
,求cos∠POQ;
(2)若θ=
π
4
,求四边形OMPN面积的最大值,
(3)并求取最大值时的α值.

查看答案和解析>>

科目: 来源: 题型:

在无穷数列{an}中,a1=1,对于任意n∈N*,都有an∈N*,an<an+1.设m∈N*,记使得an≤m成立的n最大值为bm
(Ⅰ)设数列为1,3,5,7,…,写出b1,b2,b3的值;
(Ⅱ)若{bn}为等差数列,求出所有可能的数列{an};
(Ⅲ)设ap=q,a1+a2+…+ap=A,求b1+b2+…+bq的值.(用p,q,A表示)

查看答案和解析>>

科目: 来源: 题型:

关于x的方程ax2-2(a+1)x+a-1=0,求a为何值时:
(1)方程有一根;
(2)方程有一正根一负根;
(3)两根都大于1;
(4)一根大于1,一根小于1.

查看答案和解析>>

科目: 来源: 题型:

已知△ABC的周长为4(
2
+1),且sinB+sinC=
2
sinA.
(1)求边长a的值;
(2)若S△ABC=3sinA,求角A的大小(结果用反三角函数值表示).

查看答案和解析>>

科目: 来源: 题型:

在一次招聘考试中,有12道备选题,其中8道A类题,4道B类题,每位考生都要在其中随机抽出3道题回答
(Ⅰ)求某考生至少抽到1道B类题的概率;
(Ⅱ)已知所抽出的3道题中有2道A类题,1道B类题,设该考生答对每道A类题的概率都是
3
5
,答对每道B类题的概率都是
4
5
,且各题答对与否相互独立,用X表示该考生答对题的个数,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

一次考试共有8道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有5道题的答案是正确的,其余题中:有一道题可以判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:
(Ⅰ)得40分的概率;
(Ⅱ)设所得分数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案