相关习题
 0  211893  211901  211907  211911  211917  211919  211923  211929  211931  211937  211943  211947  211949  211953  211959  211961  211967  211971  211973  211977  211979  211983  211985  211987  211988  211989  211991  211992  211993  211995  211997  212001  212003  212007  212009  212013  212019  212021  212027  212031  212033  212037  212043  212049  212051  212057  212061  212063  212069  212073  212079  212087  266669 

科目: 来源: 题型:

证明:函数y=x3在区间(0,+∞)是增函数.【提示:a3-b3=(a-b)(a2+ab+b2)】

查看答案和解析>>

科目: 来源: 题型:

某单位有2000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:
人数 管理 技术开发 营销 生产 共计
老年 40 40 40 80 200
中年 80 120 160 240 600
青年 40 160 280 720 1200
小计 160 320 480 1040 2000
(1)若要抽取40人调查身体状况,则应怎样抽样?
(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)在定义域为R内单调递增,求满足f(2a-1)<f(a+3)的a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=x+
a
x
+b(a>b>0),求f(x)的单调区间,并证明f(x)在其单调区间上的单调性.

查看答案和解析>>

科目: 来源: 题型:

2014年3月1日,部分高校在湖南省城长沙举行自主招生笔试,岳阳、长沙两城之间开通了高速列车,假设岳阳到长沙每天8:00-9:00,9:00-10:00两个时间段内各有一趟列车从岳阳到长沙(两车发车情况互不影响),岳阳发车时间及其概率如下表所示:
发车时间 8:10 8:30 8:50 9:10 9:30 9:50
概率
1
6
1
2
1
3
1
6
1
2
1
3
若甲、乙两位同学打算从岳阳到长沙参加自主招生,假设他们到达岳阳火车站候车的时间分别是周五8:00和周六8:20.(只考虑候车时间,不考虑其它因素)
(1)设乙同学候车所需时间为随机变量X,求X的分布列和数学期望;
(2)求甲、乙二人候车时间相等的概率.

查看答案和解析>>

科目: 来源: 题型:

已知曲线C的方程为y2=4x,过原点作斜率为1的直线和曲线C相交,另一个交点记为P1,过P1作斜率为2的直线与曲线C相交,另一个交点记为P2,过P2作斜率为4的直线与曲线C相交,另一个交点记为P3,…,如此下去,一般地,过点Pn作斜率为2n的直线与曲线C相交,另一个交点记为Pn+1,设点Pn(xn,yn)(n∈N*).
(1)指出y1,并求yn+1与yn的关系式(n∈N*);
(2)求{y2n-1}(n∈N*)的通项公式,并指出点列P1,P3,…,P2n+1,…向哪一点无限接近?说明理由;
(3)令an=y2n+1-y2n-1,数列{an}的前n项和为Sn,设bn=
1
3
4
Sn+1
,求所有可能的乘积bi•bj(1≤i≤j≤n)的和.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
x+m
x-1
在区间(-∞,1]单调递减,
(1)求实数m的取值范围;
(2)求函数f(x)在区间[2,5]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:

为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下资料:
日期 4月1日 4月7日 4月15日 4月21日 4月30日
温差x/℃ 10 11 13 12 8
发芽数y/颗 23 25 30 26 16
(Ⅰ)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y关于x的线性回归方程
?
y
=bx+a;
(Ⅱ)若由线性回归方程得到的估计数据与所选出的两组检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(I)中所得的线性回归方程是否可靠?
(参考公式:b=
n
i-1
xiyi-n
.
x
.
.
y
n
i-1
x
2
i
-n
-2
x
,a=
.
y
-b
.
x
)(参考数据:
3
i-1
xiyi=977,
3
i-1
x
2
i
=43.4)

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}满足a2=3a1,Sn是数列{an}的前n项和,且有Sn+1+Sn+Sn-1=3n2+2(n≥2,n∈N*
(1)若数列{an}为等差数列,求通项an
(2)若对于任意n∈N*,an<an+1恒成立,求a1的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知cosα=-
4
5
,α为第三象限角.
(1)求sinα,tanα的值; 
(2)求sin(α+
π
4
),tan2α的值.

查看答案和解析>>

同步练习册答案