相关习题
 0  211949  211957  211963  211967  211973  211975  211979  211985  211987  211993  211999  212003  212005  212009  212015  212017  212023  212027  212029  212033  212035  212039  212041  212043  212044  212045  212047  212048  212049  212051  212053  212057  212059  212063  212065  212069  212075  212077  212083  212087  212089  212093  212099  212105  212107  212113  212117  212119  212125  212129  212135  212143  266669 

科目: 来源: 题型:

已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)当ω=2时,x∈[-
π
6
π
3
],求f(x)的值域;
(2)若y=f(x)在[-
π
4
3
]单调递增,求ω的取值范围.

查看答案和解析>>

科目: 来源: 题型:

设各项都是正整数的无穷数列{an}满足:对任意n∈N*,有an<an+1.记bn=aan
(1)若数列{an}是首项a1=1,公比q=2的等比数列,求数列{bn}的通项公式;
(2)若bn=3n,证明:a1=2;
(3)若数列{an}的首项a1=1,cn=a an+1,{cn}是公差为1的等差数列.记dn=-2n•an,Sn=d1+d2+…+dn-1+dn,问:使Sn+n•2n+1>50成立的最小正整数n是否存在?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

在数列{an}中,an=
1
n
(n∈N*).从数列{an}中选出k(k≥3)项并按原顺序组成的新数列记为{bn},并称{bn}为数列{an}的k项子列.例如数列
1
2
1
3
1
5
1
8
为{an}的一个4项子列.
(Ⅰ)试写出数列{an}的一个3项子列,并使其为等差数列;
(Ⅱ)如果{bn}为数列{an}的一个5项子列,且{bn}为等差数列,证明:{bn}的公差d满足-
1
8
<d<0;
(Ⅲ)如果{cn}为数列{an}的一个m(m≥3)项子列,且{cn}为等比数列,证明:c1+c2+c3+…+cm≤2-
1
2m-1

查看答案和解析>>

科目: 来源: 题型:

表面积为144π的球内切于一个圆台(即球与圆台的上、下底面和侧面都相切),如果圆台的下底面与上底面的半径之差为5,求圆台的表面积和体积.

查看答案和解析>>

科目: 来源: 题型:

“蛟龙号”从海底中带回的某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为
1
3
,乙组能使生物成活的概率为
1
2
,假定试验后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败的.
(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)如果乙小组成功了4次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率;
(3)若甲乙两小组各进行2次试验,设试验成功的总次数为ξ,求ξ的期望.

查看答案和解析>>

科目: 来源: 题型:

已知正项数列{xn}满足xn+
1
xn+1
<2(n∈N*).
(1)证明:xn+
1
xn
≥2;
(2)证明:xn<xn+1
(3)证明:
n-1
n
<xn
n+1
n

查看答案和解析>>

科目: 来源: 题型:

已知ad≠bc,求证:(a2+b2)(c2+d2)>(ac+bd)2

查看答案和解析>>

科目: 来源: 题型:

已知f(x)是定义在(-1,1)上的单调递增函数,解不等式:f(t-1)-f(-t)<0.

查看答案和解析>>

科目: 来源: 题型:

如图,已知OPQ是半径为
3
,圆心角为
π
3
的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形,记∠COP=x,矩形ABCD的面积为f(x).
(Ⅰ)求函数f(x)的解析式,并写出其定义域;
(Ⅱ)求函数y=f(x)+f(x+
π
4
)的最大值及相应的x值.

查看答案和解析>>

科目: 来源: 题型:

△ABC的三个内角A,B,C对应边分别为a,b,c.若A,B,C成等差数列,求证:
c
a+b
+
a
b+c
=1.

查看答案和解析>>

同步练习册答案