相关习题
 0  212064  212072  212078  212082  212088  212090  212094  212100  212102  212108  212114  212118  212120  212124  212130  212132  212138  212142  212144  212148  212150  212154  212156  212158  212159  212160  212162  212163  212164  212166  212168  212172  212174  212178  212180  212184  212190  212192  212198  212202  212204  212208  212214  212220  212222  212228  212232  212234  212240  212244  212250  212258  266669 

科目: 来源: 题型:

给出下列命题:
(1)p:x-2=0,q:(x-2)(x-3)=0.
(2)p:m<-2;q:方程x2-x-m=0无实根.
(3)已知四边形M,p:M是矩形;q:M的对角线相等.
试分别指出p是q的什么条件.

查看答案和解析>>

科目: 来源: 题型:

已知集合A={x|y=
x+1
x-2
},B={x|y=lg(x2-(2a+1)x+a2+a)}
(1)分别求集合A,B;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}中,a1=1,且有|an+1|=|an+1|.
(1)写出a3所有可能的值;
(2)是否存在一个数列{an}满足:对于任意正整数n,都有an+6=an成立?若有,请写出这个数列的前6项,若没有,说明理由;
(3)求|a1+a2+…+a10|的最小值.

查看答案和解析>>

科目: 来源: 题型:

已知集合A={y|y=x2-
3
2
x+1,x∈[
3
4
,2]},B={x|x+m2≥1},p:x∈A,q:x∈B,且p是q的充分不必要条件.
(1)当m=
1
4
时,求集合A∩B;
(2)求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

在某次三星杯围棋决赛中,小将A以2:0战胜上届冠军B,引起B所在国围棋界一片哗然!已知三星杯决赛采用的是三局两胜制,若选手A在一次对决中战胜选手B的概率为
2
5

(Ⅰ)求选手A战胜选手B的概率;
(Ⅱ)若赛制改为七局四胜制,即选手A战胜选手B所需局数为X,求X的期望.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ex-a(x+2)-b(e为自然对数的底数,a,b∈R).
(1)讨论函数f(x)的单调性;
(2)若对x∈R,f(x)≥0恒成立,求证:(a+1)(b+1)<(1+e2)ee+2

查看答案和解析>>

科目: 来源: 题型:

设p:
m-2
m-3
2
3
,q:关于x的不等式x2-4x+m2≤0的解集是空集,试确定实数m的取值范围,使得p或q为真命题,p且q为假命题.

查看答案和解析>>

科目: 来源: 题型:

某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点O为圆心的两个同心圆弧AD、弧BC以及两条线段AB和CD围成的封闭图形.花坛设计周长为30米,其中大圆弧AD所在圆的半径为10米.设小圆弧BC所在圆的半径为x米(0<x<10),圆心角为θ弧度.
(1)求θ关于x的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y,当x为何值时,y取得最大值?

查看答案和解析>>

科目: 来源: 题型:

如果二次函数f(x)=x2+mx+(m+4)的两个零点都在1和2之间,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=lnx-
1
2
ax2-2x,其中a∈R,a≠0.
(Ⅰ)若(1,f(1))是f(x)的一个极值点,求a的值;
(Ⅱ)若函数f(x)的图象上任意一点处切线的斜率k≥-1恒成立,求实数a的最大值;
(Ⅲ)试着讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案