相关习题
 0  212106  212114  212120  212124  212130  212132  212136  212142  212144  212150  212156  212160  212162  212166  212172  212174  212180  212184  212186  212190  212192  212196  212198  212200  212201  212202  212204  212205  212206  212208  212210  212214  212216  212220  212222  212226  212232  212234  212240  212244  212246  212250  212256  212262  212264  212270  212274  212276  212282  212286  212292  212300  266669 

科目: 来源: 题型:

已知圆C的圆心C在直线y=x上,且与x轴正半轴相切,点C与坐标原点O的距离为
2

(Ⅰ)求圆C的标准方程;
(Ⅱ)直线l过点M(1,
1
2
)且与圆C相交于A,B两点,求弦长|AB|的最小值及此时直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ax-ax2+lnx,a≥0,当a=1时,求f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=(sinx+cosx)2+2
3
sin2x.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2acosC+c=2b,求f(B)的取值范围.

查看答案和解析>>

科目: 来源: 题型:

抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点.
(1)求p的值;
(2)若直线AB与x轴交于点Q(-1,0),且|QA|=2|QB|,求直线AB的斜率;
(3)若AB的垂直平分线l与x轴交于点C,且|AF|+|BF|=8,求点C的坐标.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
1
2
x2
+alnx,g(x)=(a+1)x.
(Ⅰ)若直线y=g(x)恰好为曲线y=f(x)的切线时,求实数a的值;
(Ⅱ)当x∈[
1
e
,e]时(其中无理数e=2.71828…),f(x)≤g(x)恒成立,试确定实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

深圳科学高中大约共有600台空调,空调运行所释放的氟里昂会破坏大气上层的臭氧层.假设臭氧层含量W呈指数型函数变化,满足关系W=W0e-0.02t,其中W0是臭氧的初始量.(参考数据 e-0.6932=
1
2

(1)判断函数W=W0e-0.02t的单调性,并用定义证明.
(2)多少年后将会有一半的臭氧消失?

查看答案和解析>>

科目: 来源: 题型:

内接于单位圆O的锐角△ABC中,已知角A,B,C对边的边长分别是a,b,c,且
OA
OB
=-
1
2
,求∠C的大小及边c的长度.

查看答案和解析>>

科目: 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C所对的边,a=2
7
,b=2,c=2
3
,求△ABC的面积S.

查看答案和解析>>

科目: 来源: 题型:

一自行车以6m/s的速度向北行驶,这时骑车人感觉风自正西方向吹来,但站在地面上测得风从南偏西60°方向吹来,试求:风向对于车的速度和风向对于地的速度.

查看答案和解析>>

科目: 来源: 题型:

一条河的两岸平行,河的宽度d=500m,一艘船从A处出发到河对岸,已知船的静水速度
v1
=10km/h,水流速度
v2
=2km/h.要使船行驶的时间最短,那么船行驶的距离与合速度的比值必须最小.此时我们分三种情况讨论:
(1)当船逆流行驶,与水流成钝角时;
(2)当船顺流行驶,与水流成锐角时;
(3)当船垂直于对岸行驶,与水流成直角时.
请计算上面三种情况,是否当船垂直于对岸行驶时,与水流成直角时,所用时间最短.

查看答案和解析>>

同步练习册答案