相关习题
 0  212112  212120  212126  212130  212136  212138  212142  212148  212150  212156  212162  212166  212168  212172  212178  212180  212186  212190  212192  212196  212198  212202  212204  212206  212207  212208  212210  212211  212212  212214  212216  212220  212222  212226  212228  212232  212238  212240  212246  212250  212252  212256  212262  212268  212270  212276  212280  212282  212288  212292  212298  212306  266669 

科目: 来源: 题型:

深圳科学高中致力于培养以科学、技术、工程和数学见长的创新型高中学生,“工程技术”专用教室是学校师生共建的创造者的平台,该教室内某设备D价值24万元,D的价值在使用过程中逐年减少,从第2年到第5年,每年初D的价值比上年初减少2万元;从第6年开始,每年初D的价值为上年初的25%,
(1)求第5年初D的价值a5
(2)求第n年初D的价值an的表达式;
(3)若设备D的价值an大于2万元,则D可继续使用,否则须在第n年初对D更新,问:须在哪一年初对D更新?

查看答案和解析>>

科目: 来源: 题型:

若0<x,y<
π
2
,且sinx=xcosy,求证:y<x<2y.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,点P(2,
3
)在椭圆上.
(1)求椭圆C的方程;
(2)设椭圆的左右顶点分别是A、B,过点Q(2,0)的动直线与椭圆交于M,N两点,连接AN、BM相交于G点,试求点G的横坐标的值.

查看答案和解析>>

科目: 来源: 题型:

为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表:
月工资
(单位:百元)
[15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
男员工数 1 8 10 6 4 4
女员工数 4 2 5 4 1 1
(Ⅰ)完成如图月工资频率分布直方图(注意填写纵坐标);
(Ⅱ)试由图估计该单位员工月平均工资;
(Ⅲ)若从月工资在[25,35)和[45,55)两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.

查看答案和解析>>

科目: 来源: 题型:

某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级.某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人.

(1)求该班考生中“阅读与表达”科目中成绩等级为A的人数;
(2)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场中有2人10分,3人9分,从这5人中随机抽取2人,求2人成绩之和为19分的概率.

查看答案和解析>>

科目: 来源: 题型:

小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.
(Ⅰ)根据图中的数据信息,求出众数x0
(Ⅱ)小明的父亲上班离家的时间y在上午7:00至7:30之间,而送报人每天在x0时刻前后半小时内把报纸送达(每个时间点送达的可能性相等):
①求小明的父亲在上班离家前能收到报纸(称为事件A)的概率;
②求小明的父亲周一至周五在上班离家前能收到报纸的天数X的数学期望.

查看答案和解析>>

科目: 来源: 题型:

已知等比数列{an}的各项均为正数,a2=4,a3+a4=24.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{
bn
an
}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:

如图甲,矩形ABCD,(AB>AD)的周长是24,把△ABC沿AC向△ADC折叠,AB折过去后交DC于点P,得到图乙,设AB=x,

(1)设PC=a,试用x表示出a;
(2)把△ADP的面积S表示成x的函数,并求出该函数的最大值及相应的x值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=xlnx.
(1)求函数f(x)的单调区间;
(2)求证:对任意的x1,x2∈(0,+∞),恒有f(x1+x2)>f(x1)+f(x2).并依据此结论,写出一般性结论,不需要证明;
(3)已知不等式ln(1+x)<x在x>-1且x≠0时恒成立,求证:
1
22
ln22+
1
32
ln32+L+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
(n∈N*).

查看答案和解析>>

科目: 来源: 题型:

计算:
(1)(2
7
9
)0.5+0.1-1+(2
10
27
)-
2
3
-3π0+9-0.5+490.5×2-4

(2)lg125+lg8+lg5lg20+lg22.

查看答案和解析>>

同步练习册答案