相关习题
 0  212184  212192  212198  212202  212208  212210  212214  212220  212222  212228  212234  212238  212240  212244  212250  212252  212258  212262  212264  212268  212270  212274  212276  212278  212279  212280  212282  212283  212284  212286  212288  212292  212294  212298  212300  212304  212310  212312  212318  212322  212324  212328  212334  212340  212342  212348  212352  212354  212360  212364  212370  212378  266669 

科目: 来源: 题型:

写出小于10的正偶数集合A的所有真子集.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为单位圆C2:x2+y2=1的直径,且椭圆的离心率为
6
3

(1)求椭圆的方程;
(2)过椭圆短轴的上顶点B1作直线分别与单位圆C2和椭圆C1交于A,B两点(A,B两点均在y轴的右侧),设B2为椭圆的短轴的下顶点,求∠AB2B的最大值.

查看答案和解析>>

科目: 来源: 题型:

如图,在平面直角坐标系xOy中,已知A,B,C是椭圆
x2
a2
+
y2
b2
=1(a>b>0)上不同的三点,A(3
2
3
2
2
),B(-3,-3),C在第三象限,线段BC的中点在直线OA上.
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点P在椭圆上(异于点A,B,C)且直线PB,PC分别交直线OA于M,N两点,证明
OM
ON
为定值并求出该定值.

查看答案和解析>>

科目: 来源: 题型:

学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若满意度不低于98分,则评价该教师为“优秀”.求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
(Ⅲ)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记ξ表示抽到评价该教师为“优秀”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

已知向量
m
=(
3
sinαωx,cosωx),
n
=(cosωx,-cosωx)(ω>0)函数f(x)=
m
n
的最小正周期为
π
2

(Ⅰ)求ω的值;
(Ⅱ)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,若关于x的方程f(x)=k有两个不同的实数解,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知圆锥的表面积为10π,当圆锥的底面半径为何值时,圆锥体积最大?并求出它的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知向量
m
=(sinωx,1),
n
=(4cos(ωx-
π
6
),cos2ωx)其中f(x)=
m
n
(ω>0),函数最小正周期为π,x∈R.
(1)求f(x)的单调递增区间.
(2)在ABC中,a,b,c分别为角A,B,C的对边,已知b2=ac,且a2-c2=ac-bc,求的f(A)值.

查看答案和解析>>

科目: 来源: 题型:

已知圆C的方程:(x-2)2+y2=16,点A(4,2),过点A作一条直线与圆C交于M、N两点,求MN中点的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线C:y2=2px(p>0)的焦点为F,点P(a,a)(a>0)在抛物线上,且|PF|=
5
4

(1)求抛物线C的方程;
(2)设直线y=kx+b与抛物线交于A,B两点.
 ①当k=1,b=-4时,求证:点H(2,0)为△PAB的垂心;
 ②若△PAB的垂心为点H(m,0)(m>1),试求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:

如图,已知点P(x0,y0)到直线l:Ax+By+C=0(AB≠0)的距离为d,求证:d=
|Ax0+By0+C|
A2+B2

查看答案和解析>>

同步练习册答案