相关习题
 0  212186  212194  212200  212204  212210  212212  212216  212222  212224  212230  212236  212240  212242  212246  212252  212254  212260  212264  212266  212270  212272  212276  212278  212280  212281  212282  212284  212285  212286  212288  212290  212294  212296  212300  212302  212306  212312  212314  212320  212324  212326  212330  212336  212342  212344  212350  212354  212356  212362  212366  212372  212380  266669 

科目: 来源: 题型:

已知集合A={x|x2-3x+2≤0},B={x|x2-(a+1)x+a≤0}.
(1)若A?B,求a的取值范围;
(2)若A⊆B,求a的取值范围;
(3)若A=B,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

若函数y=
1
ax2-2ax+a+1
的定义域为实数集
R,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

如图,已知x2+(y+2)2=4与坐标轴相交于O、A两点(O为坐标原点),另有抛物线y=ax2(a>0).
(Ⅰ)若抛物线上存在点B,直线BC切园于点C,四边形OACB是平行四边形,求抛物线的方程;
(Ⅱ)过点A作抛物线的切线,切点为P,直线AP与园相交于另一点Q,求
|AQ|
|QP|
的取值范围.

查看答案和解析>>

科目: 来源: 题型:

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=2,b1=3,a3+b5=56,a5+b3=26.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若-x2+3x≤
2bn
2n+1
对任意n∈N*恒成立,求实数x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0),左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足∠F1MF2=60°,且SF1MF2=
4
3
3

(1)求椭圆C的方程;
(2)过点P(0,2)分别作直线PA、PB交椭圆C于A、B两点,设PA、PB的斜率分别是k1,k2,且k1+k2=4,求证:直线AB过定点,并求出直线AB的斜率k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知cos(x-
π
6
)=
2
3
,x∈(0,
π
2
),求sin(x-
π
3
).

查看答案和解析>>

科目: 来源: 题型:

已知方程组
(x-2)3+2x+sin(x-2)=2
(y-2)3+2y+sin(y-2)=6
,求x+y的值.

查看答案和解析>>

科目: 来源: 题型:

A={x|x2-3x+2=0},B={x|ax-2=0},若B⊆A,求a.

查看答案和解析>>

科目: 来源: 题型:

定义:对于函数f(x),若存在非零常数M,T,使函数f(x)对于定义域内的任意实数x,都有f(x+T)-f(x)=M,则称函数f(x)是广义周期函数,其中称T为函数f(x)的广义周期,M称为周距.
(1)证明函数f(x)=x+(-1)x(x∈Z)是以2为广义周期的广义周期函数,并求出它的相应周距M的值;
(2)试求一个函数y=g(x),使f(x)=g(x)+Asin(ωx+φ)(x∈R)(A、ω、φ为常数,A>0,ω>0)为广义周期函数,并求出它的一个广义周期T和周距M;
(3)设函数y=g(x)是周期T=2的周期函数,当函数f(x)=-2x+g(x)在[1,3]上的值域为[-3,3]时,求f(x)在[-9,9]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:

如图,已知平面内一动点A到两个定点F1、F2的距离之和为4,线段F1F2的长为2
3

(1)求动点A的轨迹Γ的方程;
(2)过点F1作直线l与轨迹Γ交于A、C两点,且点A在线段F1F2的上方,线段AC的垂直平分线为m.
①求△AF1F2的面积的最大值;
②轨迹Γ上是否存在除A、C外的两点S、T关于直线m对称,请说明理由.

查看答案和解析>>

同步练习册答案