相关习题
 0  212244  212252  212258  212262  212268  212270  212274  212280  212282  212288  212294  212298  212300  212304  212310  212312  212318  212322  212324  212328  212330  212334  212336  212338  212339  212340  212342  212343  212344  212346  212348  212352  212354  212358  212360  212364  212370  212372  212378  212382  212384  212388  212394  212400  212402  212408  212412  212414  212420  212424  212430  212438  266669 

科目: 来源: 题型:

已知函数y=2sin(
π
6
-
1
3
x),求:当x为何值时y>1.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}的通项公式为an=2×3n+
2
3n-1
,m、n、p属于自然数,且m<n<p,问:数列{an}中是否存在三项am,an,ap,使数列am,an,ap为等差数列?如果存在,求出这三项;如果不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

设全集U=R,且A={x|x<-1或x>2},B={y|y=x2+a},若∁uA⊆B,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

设等差数列{an}的公差为d,且a1,d∈N*.若设M1是从a1开始的前t1项数列的和,即M1=a1+…+a t 1(1≤t1,t1∈N*),M2=at1+1+at1+2+…+at2(1<t2∈N*),如此下去,其中数列{Mi}是从第ti-1+1(t0=0)开始到第ti(1<ti)项为止的数列的和,即Mi=ati-1+1+…+ati(1≤ti,ti∈N*).
(1)若数列an=n(1≤n≤13,n∈N*),试找出一组满足条件的M1,M2,M3,使得:M22=M1M3
(2)试证明对于数列an=n(n∈N*),一定可通过适当的划分,使所得的数列{Mn}中的各数都为平方数;
(3)若等差数列{an}中a1=1,d=2.试探索该数列中是否存在无穷整数数列{tn},(1≤t1<t2<t3<…<tn),n∈N*,使得{Mn}为等比数列,如存在,就求出数列{Mn};如不存在,则说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≥
π
2
,x∈R)的最大值是3,其相邻两条对称轴间的距离为
π
2

(1)求f(x)的表达式;
(2)求函数y=f(x)+
3
sin2x的最大值,并求出相应的x值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)为奇函数,且f(x+3)=f(x),f(2)=
2m-3
m+1
,f(1)>1,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知sinα=
5
13
,且α∈(
π
2
,π),求cos2α及sin
α
2
的值.

查看答案和解析>>

科目: 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD是等腰梯形,且AB∥CD,O是AB中点,PO⊥平面ABCD,PO=CD=DA=
1
2
AB=4,M是PA中点.
(1)证明:平面PBC∥平面ODM;
(2)求点A到平面PCD的距离.

查看答案和解析>>

科目: 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点为F,焦距是2c,左顶点是A,虚轴的上端点是B(0,b),若
BA
BF
=3ac,求该双曲线的离心率.

查看答案和解析>>

科目: 来源: 题型:

已知α:0≤x<3,β:-1<x≤4,γ:2x2+mx-1<0.
(1)若α是γ的充分条件,求m的取值范围.
(2)若β是γ的必要条件,求m的取值范围.

查看答案和解析>>

同步练习册答案