相关习题
 0  212259  212267  212273  212277  212283  212285  212289  212295  212297  212303  212309  212313  212315  212319  212325  212327  212333  212337  212339  212343  212345  212349  212351  212353  212354  212355  212357  212358  212359  212361  212363  212367  212369  212373  212375  212379  212385  212387  212393  212397  212399  212403  212409  212415  212417  212423  212427  212429  212435  212439  212445  212453  266669 

科目: 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x-y+
6
=0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A、B两点,且kOA•kOB=-
b2
a2
,判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目: 来源: 题型:

三棱台ABC-A′B′C′的上、下底面均为正三角形,侧面为等腰梯形,且上、下底面的边长比为2:3,分别过AB′、B′C和B′C、A′C作截面,把这个三棱台分成三个棱锥,则这三个棱锥的体积比为多少?

查看答案和解析>>

科目: 来源: 题型:

如图,在△ABC中,D是边AC的中点,且AB=AD=1,BD=
2
3
3

(1)求cosA的值;
(2)求sinC的值.

查看答案和解析>>

科目: 来源: 题型:

求f(x)=
x
的定义域.

查看答案和解析>>

科目: 来源: 题型:

设椭圆
x2
a2
+y2=1(a>1)的离心率为
3
2
,过点Q(1,0)任作一条弦交椭圆于C、D两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为直线x=4上任意一点,kPC,kPQ,kPD分别为直线PC,PQ,PD的斜率.是否存在实数λ,使kPC+kPD=λkPQ恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知(x-3)2+y2=6,求
y
x
的值域.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,长轴是短轴的2倍,且过点E(
8
5
3
5
),又知一圆的方程为(x-1)2+y2=9
(1)求椭圆的方程;
(2)证明存在不垂直于x轴的直线l与已知圆交于A、B两点,与椭圆交于C、D两点,且满足|
AC
|=|
BD
|,并求|
AB
|的范围.

查看答案和解析>>

科目: 来源: 题型:

求函数y=
b
a
a2-x2
的导数.

查看答案和解析>>

科目: 来源: 题型:

求过点A(1,-1)且与圆C:x2+y2=100切于点B(8,6)的圆的方程.

查看答案和解析>>

科目: 来源: 题型:

为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:
新能源汽车补贴标准
车辆类型 续驶里程R(公里)
80≤R<150 150≤R<250 R≥250
纯电动乘用车 3.5万元/辆 5万元/辆 6万元/辆
某校研究性学习小组,从汽车市场上随机选取了M辆纯电动乘用车,根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
分组 频数 频率
80≤R<150 2 0.2
150≤R<250 5 x
R≥250 y z
合计 M 1
(Ⅰ)求x,y,z,M的值;
(Ⅱ)若从这M辆纯电动乘用车中任选2辆,求选到的2辆车续驶里程都不低于150公里的概率;
(Ⅲ)若以频率作为概率,设X为购买一辆纯电动乘用车获得的补贴,求X的分布列和数学期望EX.

查看答案和解析>>

同步练习册答案