相关习题
 0  212261  212269  212275  212279  212285  212287  212291  212297  212299  212305  212311  212315  212317  212321  212327  212329  212335  212339  212341  212345  212347  212351  212353  212355  212356  212357  212359  212360  212361  212363  212365  212369  212371  212375  212377  212381  212387  212389  212395  212399  212401  212405  212411  212417  212419  212425  212429  212431  212437  212441  212447  212455  266669 

科目: 来源: 题型:

为了寻找马航MH370残骸,我国“雪龙号”科考船于2014年3月26日从港口O出发,沿北偏东α角的射线OZ方向航行,而在港口北偏东β角的方向上有一个给科考船补给物资的小岛A,OA=300
13
海里,且tanα=
1
3
,cosβ=
2
13
.现指挥部需要紧急征调位于港口O正东m海里的B处的补给船,速往小岛A装上补给物资供给科考船.该船沿BA方向全速追赶科考船,并在C处相遇.经测算当两船运行的航线与海岸线OB围成的三角形OBC的面积S最小时,这种补给方案最优.
(1)求S关于m的函数关系式S(m);
(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?

查看答案和解析>>

科目: 来源: 题型:

已知圆O:x2+y2=4内一定点Q(1,0),过点Q作倾斜角不为0°的直线L交圆O于A、B两点.
(1)若
AQ
=2
QB
,求直线L的方程;
(2)试证在x轴上存在一定点M,使得MQ平分∠AMB,并求出定点M的坐标;
(3)对于(2)中的点M,若∠AMB=60°,求△AMB的面积.

查看答案和解析>>

科目: 来源: 题型:

已知实数x,y满足y=
3-x2+2x
,求z=
y+3
x-1
的取值范围.

查看答案和解析>>

科目: 来源: 题型:

如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC⊥平面BCE;
(2)点M在直线EF上,且MG∥平面AFD,求平面ACH与平面ACM所成锐角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

已知tan=2,求
15
2
sin2α-sinαcosα+3cos2α的值.

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1(-1,0),且点P(
6
2
1
2
)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线l:y=kx+m(k≠0)与椭圆C交于M,N两点,直线OM、ON的斜率存在且和为4k,求证:m2为定值.

查看答案和解析>>

科目: 来源: 题型:

已知A,B是椭圆C:2x2+3y2=9上两点,点M的坐标为(1,0).
(Ⅰ)当A,B两点关于x轴对称,且△MAB为等边三角形时,求AB的长;
(Ⅱ)当A,B两点不关于x轴对称时,证明:△MAB不可能为等边三角形.

查看答案和解析>>

科目: 来源: 题型:

某品牌电视机代理销售商根据近年销售和利润情况得出某种型号电视机的利润情况有如下规律:每台电视机的最终销售利润与其无故障使用时间T(单位:年)有关.若T≤1,则每台销售利润为0元;若1<T≤3,则每台销售利润为100元;若T>3,则每台销售利润为200元.设每台该种电视机的无故障使用时间T≤1,1<T≤3,T>3这三种情况发生的概率分别为P1,P2,P3,又知P1,P2是方程10x2-6x+a=0的两个根,且P2=P3
(Ⅰ)求P1,P2,P3的值;
(Ⅱ)记ξ表示销售两台这种电视机的销售利润总和,写出ξ的所有结果,并求ξ的分布列;
(Ⅲ)求销售两台这种型号电视机的销售利润总和的期望值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=lnx-ax2(a∈R),求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:

已知集合A={x|2x2+px+q=0},B={x|6x2+(2-p)x+5+q=0},且A∩B={
1
2
},求A∪B.

查看答案和解析>>

同步练习册答案