在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)A(n):A1,A2,A3,…,An与B(n):B1,B2,B3,…,Bn,其中n≥3,若同时满足:
①两点列的起点和终点分别相同;
②线段AiAi+1⊥BiBi+1,其中i=1,2,3,…,n-1,则称A(n)与B(n)互为正交点列.
(Ⅰ)求A(3):A1(0,2),A2(3,0),A3(5,2)的正交点列B(3);
(Ⅱ)判断A(4):A1(0,0),A2(3,1),A3(6,0),A4(9,1)是否存在正交点列B(4)?并说明理由;
(Ⅲ)?n≥5,n∈N,是否都存在无正交点列的有序整点列A(n)?并证明你的结论.