相关习题
 0  212416  212424  212430  212434  212440  212442  212446  212452  212454  212460  212466  212470  212472  212476  212482  212484  212490  212494  212496  212500  212502  212506  212508  212510  212511  212512  212514  212515  212516  212518  212520  212524  212526  212530  212532  212536  212542  212544  212550  212554  212556  212560  212566  212572  212574  212580  212584  212586  212592  212596  212602  212610  266669 

科目: 来源: 题型:

对任意实数x,函数f(x)=
mx2-4mx+m+3
都有意义,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线E:y2=2px,在抛物线上任意画一个点S,度量点S的坐标(xS,yS),如图.
(Ⅰ)拖动点S,发现当xS=4时,yS=4,试求抛物线E的方程;
(Ⅱ)设抛物线E的顶点为A,焦点为F,构造直线SF交抛物线E于不同两点S、T,构造直线AS、AT分别交准线于M、N两点,构造直线MT、NS.经观察得:沿着抛物线E,无论怎样拖动点S,恒有MT∥NS.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线E的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点F”改变为其它“定点G(g,0)(g≠0)”,其余条件不变,发现“MT与NS不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“MT∥NS”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

科目: 来源: 题型:

某地区共有100万人,现从中随机抽查800人,发现有700人不吸烟,100人吸烟.这100位吸烟者年均烟草消费支出情况的频率分布直方图如图.将频率视为概率,回答下列问题:
(Ⅰ)在该地区随机抽取3个人,求其中至少1人吸烟的概率;
(Ⅱ)据统计,烟草消费税大约为烟草消费支出的40%,该地区为居民支付因吸烟导致的疾病治疗等各种费用年均约为18800万元.问:当地烟草消费税是否足以支付当地居民因吸烟导致的疾病治疗等各种费用?说明理由.

查看答案和解析>>

科目: 来源: 题型:

△ABC的顶点B(-2,0),C(2,0),周长为16,求顶点A的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),F(
2
,0)为其右焦点,过F垂直于x轴的直线与椭圆相交所得的弦长为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m(|k|≤
2
2
)与椭圆C相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点,求|OP|的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2,离心率为
2
2

(1)求椭圆C的方程;
(2)若过点M(2,0)的引斜率为k的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足
OG
+
OH
=t
OP
(O为坐标原点),当|
PG
-
PH
|<
2
5
3
时,求实数t的取值范围?

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=lnx,g(x)=ax+1,a∈R,记F(x)=f(x)-g(x).
(Ⅰ)求曲线y=f(x)在x=e处的切线方程;
(Ⅱ)求函数F(x)的单调区间;
(Ⅲ)当a>0时,若函数F(x)没有零点,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

某家庭手工坊生产某种儿童玩具,每件玩具的成本为10元,并且每件玩具的加工费为2元,设该手工厂作坊每件玩具的卖出价为x元(15≤x≤21),根据市场调查,日销售量c=
2k
x2-128
(k为常数).当每件玩具的出厂价为20元时,日销售量为10件.
(1)求该手工作坊的日利润y(元)与每件玩具的出厂价x元的函数关系式;
(2)当每件玩具的售价为多少元时,该手工作坊的利润y最大,并求y的最大值.

查看答案和解析>>

科目: 来源: 题型:

一条光线从点P(6,4)射出,经过点Q(2,1),又经x轴反射,求入射光线和反射光线所在的直线方程.

查看答案和解析>>

科目: 来源: 题型:

唐徕回中随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图,其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100],
(1)求直方图中的x的值;
(2)如果上学所需时间不少于1小时的学生可申请住校,请估计学校600名新生中有多少名学生可以申请住校;
(3)学校规定上学时间在[0,20)的学生只能步行,上学时间在[20,40)的学生只能骑自行车,现在用分层抽样方法从[0,20)和[20,40)中抽取6名学生,再从这6名学生中任意抽取两人,问这两人都骑自行车的概率是多少?

查看答案和解析>>

同步练习册答案