相关习题
 0  212499  212507  212513  212517  212523  212525  212529  212535  212537  212543  212549  212553  212555  212559  212565  212567  212573  212577  212579  212583  212585  212589  212591  212593  212594  212595  212597  212598  212599  212601  212603  212607  212609  212613  212615  212619  212625  212627  212633  212637  212639  212643  212649  212655  212657  212663  212667  212669  212675  212679  212685  212693  266669 

科目: 来源: 题型:

已知函数f(x)=x3+
5
2
x2+ax+b(a,b为常数),其图象是曲线C.
(1)当a=-2时,求函数f(x)的单调减区间;
(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;
(3)已知点A为曲线C上的动点,在点A处作曲线C的切线l1与曲线C交于另一点B,在点B处作曲线C的切线l2,设切线l1,l2的斜率分别为k1,k2.问:是否存在常数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
1
2
PD

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
(3)求点P到平面BQD的距离.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点M(
6
,1),离心率为
2
2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点P(
6
,0),若A,B为已知椭圆上两动点,且满足
PA
PB
=-2,试问直线AB是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴(垂足为T),与抛物线交于不同的两点P、Q,且
F1P
F2Q
=-5.
(Ⅰ)求点T的横坐标x0
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,设
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|的取值范围.

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系xOy中,直线l的方程
x=
3
+
2
2
t
y=2-
2
2
t.
(t为参数),以原点O为极点,Ox轴为极轴,取相同的单位长度,建立极坐标系,曲线C的方程为ρ=2
3
cosθ,
(I) 求曲线C的直角坐标方程;
(Ⅱ)设曲线C与直线l交于A、B两点,若P(
3
,2)
,求|PA|+|PB|和|AB|.

查看答案和解析>>

科目: 来源: 题型:

如图所示,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明:B1C1⊥CE; 
(2)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
2
6
.求线段AM的长.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
1
x
+alnx.
(Ⅰ)若f(x)>0恒成立,试求a的取值范围;
(Ⅱ)设h(x)=f(x)+ax-lnx,a∈[1,e](e为自然对数的底),是否存在常数t,使h(x)≥t恒成立,若存在,求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

(1)已知|x-4|+|3-x|<a若不等式的解集为空集,求a的范围
(2)已知a,b,c∈R+,且a+b+c=1,求证:a2+b2+c2
1
3

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
16x+7
4x+4
,数列{an},{bn}满足a1>0,b1>0,an=f(an-1),bn=f(bn-1),n=2,3…
(Ⅰ)若a1=3,求a2,a3
(Ⅱ)求a1的取值范围,使得对任意的正整数n,都有an+1>an
(Ⅲ)若a1=3,b1=4,求证:0<bn-an
1
8n-1
,n=1,2,3…

查看答案和解析>>

科目: 来源: 题型:

如图,边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.
(1)求证:A′D⊥EF;
(2)求A′到面EFD的距离.

查看答案和解析>>

同步练习册答案