相关习题
 0  212528  212536  212542  212546  212552  212554  212558  212564  212566  212572  212578  212582  212584  212588  212594  212596  212602  212606  212608  212612  212614  212618  212620  212622  212623  212624  212626  212627  212628  212630  212632  212636  212638  212642  212644  212648  212654  212656  212662  212666  212668  212672  212678  212684  212686  212692  212696  212698  212704  212708  212714  212722  266669 

科目: 来源: 题型:

等边三角形ABC的边长为3,点D、E分别是边AB、AC上的点,且满足
AD
DB
=
CE
EA
=
1
2
(如图1).将△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B成直二面角,连结A1B、A1C(如图1).
(Ⅰ)求证:A1D⊥平面BCED:
(Ⅱ)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角的正弦值为
3
2
?若存在,求出PB的长,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

某超市计划在春节当天从有抽奖资格的顾客中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都成等差数列的为二等奖,奖金60元;三球号码分别为1,6,8为一等奖,奖金240元;其余情况无奖金.
(1)求顾客甲抽奖一次所得奖金ξ的分布列与期望;
(2)若顾客乙幸运地先后获得四次抽奖机会,求他得奖次数η的方差是多少?

查看答案和解析>>

科目: 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,且经过点(1,
2
2
).
(1)求椭圆C的方程;
(2)若点A的坐标为(2,0),直线l经过椭圆C的右焦点F,交椭圆C于P,Q两点.求证:∠PAF=∠QAF.

查看答案和解析>>

科目: 来源: 题型:

在长方体ABCD-A1B1C1D1中,AD=AA1=
1
2
AB,点E是棱AB上一点.且
AE
EB
=λ.
(1)证明:D1E⊥A1D;
(2)若二面角D1-EC-D的大小为
π
4
,求λ的值.

查看答案和解析>>

科目: 来源: 题型:

已知直线x-2y+2=0经过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆上位于x轴上方的动点,直线AS,BS与直线l:x=4分别交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)(ⅰ)设直线AS,BS的斜率分别为k1,k2,求证k1•k2为定值;
(ⅱ)求线段MN的长度的最小值.

查看答案和解析>>

科目: 来源: 题型:

如图,已知PA⊥平面ABC,等腰直角三角形ABC中,AB=BC=2,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(Ⅰ)求证:PC⊥DE;
(Ⅱ)若直线AB与平面ADE所成角的正弦值为
2
3
,求PA的值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=9x-2•3x+3k-1(k为常数)
(1)求函数f(x)在(-∞,log3a]上的最小值(a为常数);
(2)若方程f(x)=0有两个实数根,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知
a
=(3,-cos(ωx)),
b
=(sin(ωx),
3
),其中ω>0,函数f(x)=
a
b
的最小正周期为π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别为a,b,c.且f(
A
2
)=
3
,a=
3
b求角A、B、C的大小.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=lnx-ax在点A(1,f(1))处的切线为l.
(1)当切线l的斜率为2时,求实数a的值;
(2)证明:无论a取何值,函数f(x)的图象恒在直线l的下方(点A除外);
(3)已知点Q(x0,f(x0)),且当x0>1时,直线QA的斜率恒小于2,试求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

在三棱锥P-ABC中,PA=PB=PC=12,∠ACB=30°,AB=6,则PB与平面ABC所成角的余弦值为
 

查看答案和解析>>

同步练习册答案