相关习题
 0  212539  212547  212553  212557  212563  212565  212569  212575  212577  212583  212589  212593  212595  212599  212605  212607  212613  212617  212619  212623  212625  212629  212631  212633  212634  212635  212637  212638  212639  212641  212643  212647  212649  212653  212655  212659  212665  212667  212673  212677  212679  212683  212689  212695  212697  212703  212707  212709  212715  212719  212725  212733  266669 

科目: 来源: 题型:

已知f(x)=cos2x-sin2x.
(1)求f(
π
4
)的值及f(x)的最大值;
(2)求f(x)的递减区间.

查看答案和解析>>

科目: 来源: 题型:

已知直线a,b和平面α,β,γ,试判断下列说法是否正确,并说明理由:
(1)若a∥α,a∥b,b?α,则b∥α;
(2)若a∥β,β∥γ,则a∥γ;
(3)若a⊥α,b⊥a,b?α,则b∥α;
(4)若a⊥γ,β∥γ,则a⊥β.

查看答案和解析>>

科目: 来源: 题型:

如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.
(Ⅰ)证明:AC=BC;
(Ⅱ)证明:AB⊥PC;
(Ⅲ)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC体积.

查看答案和解析>>

科目: 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在原点O,半径为
a2+b2
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(
2
,0),其短轴上的一个端点到F的距离为
3

(Ⅰ)求椭圆C的方程和其“准圆”方程;
(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.
(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2
(ⅱ)求证:线段MN的长为定值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-ax.
(1)求f(x)的最大值;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范围;
(3)证明不等式:(
1
n
n+(
2
n
n+…+(
n
n
n
e
e-1

查看答案和解析>>

科目: 来源: 题型:

如图,三棱锥P-ABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,点O,D分别是AB,PB的中点,PO⊥AB,点Q在线段AC上,且AQ=2QC.
(Ⅰ)证明:CD∥平面OPQ
(Ⅱ)若二面角A-PB-C的余弦值的大小为
5
5
,求PA.

查看答案和解析>>

科目: 来源: 题型:

对于数列{an},把a1作为新数列{bn}的第一项,把ai或-ai(i=2,3,4,…,n)作为新数列{bn}的第i项,数列{bn}称为数列{an}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,-2,-3,4,5.已知数列{bn}为数列{
1
2n
}(n∈N*)的生成数列,Sn为数列{bn}的前n项和.
(Ⅰ)写出S3的所有可能值;
(Ⅱ)若生成数列{bn}满足S3n=
1
7
(1-
1
8n
),求数列{bn}的通项公式;
(Ⅲ)证明:对于给定的n∈N*,Sn的所有可能值组成的集合为{x|x=
2k-1
2n
,k∈N*,k≤2n-1}.

查看答案和解析>>

科目: 来源: 题型:

如图,已知抛物线y=
1
2
x2+bx+c
与x轴交于A(-4,0)和B(1,0)两点,与y轴交于C点.
(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;
(3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.

查看答案和解析>>

科目: 来源: 题型:

已知正项数列{an},其前n项和Sn满足8Sn=an2+4an+3,且a2是a1和a7的等比中项.
(Ⅰ)求数列{
a
 
n
}
的通项公式;
(Ⅱ)符号[x]表示不超过实数x的最大整数,记bn=[log2(
an+3
4
)]
,求b1+b2+b3+…b2n

查看答案和解析>>

科目: 来源: 题型:

如图,正三棱柱ABC-A′B′C′中,D是BC的中点,AA′=AB=2
(1)求证:AD⊥B′D;
(2)求三棱锥A′-AB′D的体积.

查看答案和解析>>

同步练习册答案