相关习题
 0  212678  212686  212692  212696  212702  212704  212708  212714  212716  212722  212728  212732  212734  212738  212744  212746  212752  212756  212758  212762  212764  212768  212770  212772  212773  212774  212776  212777  212778  212780  212782  212786  212788  212792  212794  212798  212804  212806  212812  212816  212818  212822  212828  212834  212836  212842  212846  212848  212854  212858  212864  212872  266669 

科目: 来源: 题型:

某矿产品按纯度含量分成五个等级,纯度X依次为A、B、C、D、E.现从一批该矿产品中随机抽取20件,对其纯度进行统计分析,得到频率分布表如下:
X A B C D E
f a 0.2 0.45 b c
(Ⅰ)若所抽取的20件矿产品中,纯度为D的恰有3件,纯度为E的恰有2件,求a、b、c的值;
(Ⅱ)在(Ⅰ)的条件下,从纯度为D和E的5件矿产品巾任取两件(每件矿产品被取出的可能性相同),求这两件矿产品的纯度恰好相等的概率.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的点到其两焦点距离之和为4,且过点(0,1).
(Ⅰ)求椭圆方程;
(Ⅱ)O为坐标原点,斜率为k的直线过椭圆的右焦点,且与椭圆交于点A(x1,y1),B(x2,y2),若
x1x2
a2
+
y1y2
b2
=0
,求△AOB的面积.

查看答案和解析>>

科目: 来源: 题型:

如图,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,x轴被曲线C2:y=x2-b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,
(Ⅰ)求C1、C2的方程;
(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若
S1
S2
=
5
8
,求直线AB的方程.

查看答案和解析>>

科目: 来源: 题型:

已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.
(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;
(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图所示,求该样本的方差;
(3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.

查看答案和解析>>

科目: 来源: 题型:

已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k(k>0).设抛物线W的焦点在直线AB的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D.判断四边形ABDC是否为梯形,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
1
3
x3-
a
2
x2
(Ⅰ)当a=2时,求曲线y=f(x)在点P(3,f(3))处的切线方程;
(Ⅱ)若函数f(x)与g(x)=
1
2
x2-ax+
a2
2
的图象有三个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x2+px+q满足f(1)=f(2)=0,
(1)求函数f(x)的解析式;
(2)求函数f(x)在[0,2]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:

将曲线C1:(x-4)2+y2=4所有点的横坐标不变,纵坐标变为原来的
1
2
得到曲线C2,将曲线C2向左(x轴负方向)平移4个单位,得到曲线C3
(Ⅰ)求曲线C3的方程;
(Ⅱ)垂直于x轴的直线l与曲线C3相交于C、D两点(C、D可以重合),已知A(-2,0),B(2,0),直线AC、BD相交于点P,求P点的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线的顶点在坐标原点O,焦点F在x轴上,抛物线上的点A到F的距离为2,且A的横坐标为l.直线l:y=kx+b与抛物线交于B,C两点.
(1)求抛物线的方程;
(2)当直线OB,OC的倾斜角之和为45°时,证明直线l过定点.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ax2+ln(x+1).
(1)当a=-
1
4
时,求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,+∞)上为减函数,求实数a的取值范围;
(3)当x∈[0,+∞)时,不等式f(x)-x≤0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案