相关习题
 0  212682  212690  212696  212700  212706  212708  212712  212718  212720  212726  212732  212736  212738  212742  212748  212750  212756  212760  212762  212766  212768  212772  212774  212776  212777  212778  212780  212781  212782  212784  212786  212790  212792  212796  212798  212802  212808  212810  212816  212820  212822  212826  212832  212838  212840  212846  212850  212852  212858  212862  212868  212876  266669 

科目: 来源: 题型:

如图,在四棱锥P-ABCD中,ABCD为平行四边形,BC⊥平面PAB,AB=BC=
1
2
PB,∠APB=30°,M为PB的中点.
(1)求证:PD∥平面AMC;
(2)求锐二面角B-AC-M的余弦值.

查看答案和解析>>

科目: 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
过点(
3
2
2
)
,它的离心率为
6
2
,P、Q分别在双曲线的两条渐近线上,M是线段PQ中点,|PQ|=2
2

(Ⅰ)求双曲线及其渐近线方程;
(Ⅱ)求点M的轨迹C的方程;
(Ⅲ)过C左焦点F1的直线l与C相交于点A、B,F2为C的右焦点,求△ABF2面积最大时
F2A
F2B
的值.

查看答案和解析>>

科目: 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(0,4),离心率为
3
5

(1)求椭圆C的方程;
(2)求过点(3,0)且斜率为
4
5
的直线被椭圆所截得线段的中点坐标.

查看答案和解析>>

科目: 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=
5
5
,过F1的直线交椭圆于M、N两点,且△MNF2周长为4
5

(Ⅰ)求椭圆E的方程;
(Ⅱ)已知过椭圆中心,且斜率为k(k≠0)的直线与椭圆交于A、B两点,P是线段AB的垂直平分线与椭圆E的一个交点,若△APB的面积为
40
9
,求k的值.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)过点(2,0),且椭圆C的离心率为
1
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)若动点P在直线x=-1上,过P作直线交椭圆C于M、N两点,且
MP
=
PN
,再过P作直线l⊥MN.证明:直线l恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x3-x-
x

(I)求函数y=f(x)的零点的个数;
(Ⅱ)令g(x)=
ax2+ax
f(x)+
x
+lnx,若函数y=g(x)在(0,
1
e
)内有极值,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:g(t)-g(s)>e+2-
1
e

查看答案和解析>>

科目: 来源: 题型:

分别过椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)左、右焦点F1、F2的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4,且满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=2
3
,|CD|=
4
3
3

(1)求椭圆E的方程;
(2)是否存在定点M,N,使得|PM|+|PN|为定值?若存在,求出M、N点坐标,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

求函数f(x)=
2x-3
x+1
(-2≤x≤2且x≠-1)的值域.

查看答案和解析>>

科目: 来源: 题型:

已知双曲线C的中心在原点,焦点在x轴上,离心率为
2
,且经过点(4,-
10
).
(Ⅰ)求双曲线C的方程;
(Ⅱ)设F1、F2为双曲线C的左、右焦点,若双曲线C上一点M满足F1M⊥F2M,求△MF1F2的面积.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x|x-a|,x∈[0,1],该函数的最大值是
a2
4
,求实数a的取值范围.

查看答案和解析>>

同步练习册答案