相关习题
 0  212716  212724  212730  212734  212740  212742  212746  212752  212754  212760  212766  212770  212772  212776  212782  212784  212790  212794  212796  212800  212802  212806  212808  212810  212811  212812  212814  212815  212816  212818  212820  212824  212826  212830  212832  212836  212842  212844  212850  212854  212856  212860  212866  212872  212874  212880  212884  212886  212892  212896  212902  212910  266669 

科目: 来源: 题型:

已知t=(
1
2
x+(
2
3
x+(
5
6
x,当(t-1)(t-2)(t-3)=0时,求所有实数解的和.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=asinx+bx的图象在点(
π
3
,f(
π
3
))
处的切线方程为x+2y-
3
+
π
3
=0

(Ⅰ)求实数a,b的值;
(Ⅱ)当0<x<
π
2
时,f(x)>(m-1)x恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

如图,以
3
2
为离心率的椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点分别为A和B,点P是椭圆位于x轴上方的一点,且△PAB的面积最大值为2.
(Ⅰ)求椭圆方程;
(Ⅱ)设点Q是椭圆位于x轴下方的一点,直线AP、BQ的斜率分别为k1,k2,若k1=7k2,设△BPQ与△APQ的面积分别为S1,S2,求S1-S2的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点,B是短轴的一个端点,线段BF的延长线交椭圆于点D,且
BF
=
5
3
FD

(Ⅰ)求椭圆的离心率;
(Ⅱ)设动直线y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点M(1,0),使得PM⊥QM,求椭圆的方程.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
1+lnx
x

(Ⅰ)若函数在区间(a,a+
1
2
 )(a>0)上存在极值,求实数a的取值范围;
(Ⅱ)求证:当x≥1时,不等式f(x)>
2sinx
x+1
恒成立.

查看答案和解析>>

科目: 来源: 题型:

某市质监部门对市场上奶粉进行质量抽检,现将9个进口品牌奶粉的样品编号为1,2,3,4,…,9;6个国产品牌奶粉的样品编号为10,11,12,…,15,按进口品牌及国产品牌分层进行分层抽样,从其中抽取5个样品进行首轮检验,用P(i,j)表示编号为i,j(1≤i<j≤15)的样品首轮同时被抽到的概率.
(Ⅰ)求P(1,15)的值;
(Ⅱ)求所有的P(i,j)(1≤i<j≤15)的和.

查看答案和解析>>

科目: 来源: 题型:

四棱锥P-ABCD的底面是边长为2的菱形,∠DAB=60°,侧棱PA=PC=2
3
,PB=
10
.M,N两点分别在侧棱PB,PD上,
|PM|
|MB|
=
|PN|
|ND|
=2
(1)求证:PA⊥平面MNC.
(2)求平面NPC与平面MNC的夹角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

设点P(-2,1)在抛物线x2=2py(p>0)上,且到圆C:x2+(y+b)2=1上点的最小距离为1.
(Ⅰ)求p和b的值;
(Ⅱ)过点P作两条斜率互为相反数的直线,分别与抛物线交于两点A,B,若直线AB与圆C交于不同两点M,N.
(i)证明直线AB的斜率为定值;
(ii)求△PMN面积取最大值时直线AB的方程.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
x+1
ex
(e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)设函数φ(x)=xf(x)+tf′(x)+
1
ex
,存在函数x1,x2∈[0,1],使得成立2φ(x1)<φ(x2)成立,求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知x+5y≤60,5x+3y≤40,x∈N,y∈N,求Z=200x+150y的最大值.

查看答案和解析>>

同步练习册答案