相关习题
 0  212717  212725  212731  212735  212741  212743  212747  212753  212755  212761  212767  212771  212773  212777  212783  212785  212791  212795  212797  212801  212803  212807  212809  212811  212812  212813  212815  212816  212817  212819  212821  212825  212827  212831  212833  212837  212843  212845  212851  212855  212857  212861  212867  212873  212875  212881  212885  212887  212893  212897  212903  212911  266669 

科目: 来源: 题型:

学校设计了一个实验学科的考查方案:考生从6道备选题中一次随机抽取3道题,按照题目要求独立完成全部实验操作,并规定:在抽取的3道题中,至少正确完成其中2道题便可通过考查.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都为
2
3
,且每题正确完成与否互不影响.
(1)求考生甲正确完成题目个数ξ的分布列和数学期望;
(2)用统计学知识分析比较甲、乙两考生哪位实验操作能力强及哪位通过考查的可能性大?

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=(x2-2ax+a2)lnx,a∈R,
(1)当a=0时,求函数f(x)的单调区间;
(2)当a=-1时,令F(x)=
f(x)
x+1
+x-lnx,证明:F(x)≥-e-2,其中e为自然对数的底数;
(3)若函数f(x)不存在极值点,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线y2=x上相异两点A(x1,y1),B(x2,y2),x1+x2=2.
(1)若AB的中垂线经过点P(0,2),求直线AB的方程;
(2)若AB的中垂线交x轴于点M,求△ABM的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的底面是正三角形,点M、N分别是B1C1和A1B1的中点,AA1=AB=BM=2,∠A1AB=60°.
(Ⅰ)求证:BN⊥平面A1B1C1
(Ⅱ)求二面角A1-AB-M的余弦值.

查看答案和解析>>

科目: 来源: 题型:

如图,A、B是椭圆
y2
a2
+
x2
b2
=1(a>b>0)的两个顶点,它的短轴长为1,其一个焦点与短轴的两个端点构成正三角形.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线y=kx(k>0)与椭圆相交于R、S两点.求四边形ARBS面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知动圆P过定点A(-3,0),且与圆B:(x-3)2+y2=64相切,点P的轨迹为曲线C;设Q为曲线C上(不在x轴上)的动点,过点A作OQ的平行线交曲线C于M,N两点.
(Ⅰ)求曲线C的方程;
(Ⅱ)是否存在常数λ,使
AM
AN
PQ
2总成立,若存在,求λ;若不存在,说明理由;
(Ⅲ)求△MNQ的面积S的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知曲线C:
x2
m+2
+
y2
3-m
=1
(m∈R).
(Ⅰ)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(Ⅱ)设m=2,过点D(0,4)的直线l与曲线C交于M,N两点,O为坐标原点,若∠OMN为直角,求直线l的斜率.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线C:x2=2py(p>0)的焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)如图,过F作两条互相垂直的直线l1与l2,分别交抛物线C于A、B与D、E,设AB、DE的中点分别为M、N,求△FMN面积S的最小值.

查看答案和解析>>

科目: 来源: 题型:

若点A(1,2)是抛物线C:y2=2px(p>0)上一点,经过点B(5,-2)的直线l与抛物线C交于P,Q两点.
(Ⅰ)求证:
PA
QA
为定值;
(Ⅱ)若点P,Q与点A不重合,问△APQ的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知与抛物线x2=4y有相同的焦点的椭圆E:
y
2
 
a
2
 
+
x
2
 
b
2
 
=1(a>b>0)的上、下顶点分别为A(0,2)、B(0,-2),过(0,1)的直线与椭圆E交于M、N两点,与抛物线交于C、D两点,过C、D分别作抛物线的两切线l1、l2
(1)求椭圆E的方程并证明l1⊥l2
(2)求△AMN面积的最大值.

查看答案和解析>>

同步练习册答案