相关习题
 0  212758  212766  212772  212776  212782  212784  212788  212794  212796  212802  212808  212812  212814  212818  212824  212826  212832  212836  212838  212842  212844  212848  212850  212852  212853  212854  212856  212857  212858  212860  212862  212866  212868  212872  212874  212878  212884  212886  212892  212896  212898  212902  212908  212914  212916  212922  212926  212928  212934  212938  212944  212952  266669 

科目: 来源: 题型:

已知数列{an}为等差数列,且a5=14,a7=20,数列{bn}的前n项和为Sn,且满足3Sn=Sn-1+2(n≥2,n∈N*),b1=
2
3

(1)求数列{an},{bn}的通项公式;
(2)若cn=an•bn,Tn为数列{cn}的前n项和,求Tn

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=
3
2
(an-1).
(I)求数列{an}的通项公式;
(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{
1
bn
}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=m-|3x-4|,且不等式f(x)≥1的解集为{x|1≤x≤
5
3
}.
(1)求实数m的值;
(2)若不等式ax+1-f(x)≤0的解集为空集,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=sin(2x-
π
6
)
,x∈R.
(1)求f(x)的最小正周期T;
(2)求f(0)的值;
(3)设α是第一象限角,且f(α+
π
3
)=
3
5
,求sinα的值.

查看答案和解析>>

科目: 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,BC=
2
,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1
(Ⅰ)求证:CD=C1D;
(Ⅱ)求二面角A1-B1D-P的平面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴是短轴的两倍,点A(
3
1
2
)
在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为k1、k、k2,且k1、k、k2恰好构成等比数列,记△ABO的面积为S.
(1)求椭圆C的方程.
(2)试判断|OA|2+|OB|2是否为定值?若是,求出这个值;若不是,请说明理由?
(3)求S的最大值.

查看答案和解析>>

科目: 来源: 题型:

某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组得到的频率分布表如下:
组号 分组 频数 频率
第一组 [160,165) 5 0.050
第二组 [165,170) a 0.350
第三组 [170,175) 30 b
第四组 [175,180) c 0.200
第五组 [180,185] 10 0.100
合计 100 1.00
(1)为了能选拔出优秀的学生,高校决定在笔试成绩高的第三、四、五组中用分层抽样法抽取6名学生进入第二轮面试,试确定a,b,c的值并求第三、四、五组每组各抽取多少名学生进入第二轮面试;
(2)在(1)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组中至少有一名学生被A考官面试的概率.

查看答案和解析>>

科目: 来源: 题型:

设等差数列{an}的前n项和为Sn,满足:a2+a4=18,S7=91.递增的等比数列{bn}前n项和为Tn,满足:b1+bk=66,b2bk-1=128,Tk=126.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{cn}对?n∈N*,均有
c1
b1
+
c2
b2
+…+
cn
bn
=an+1
成立,求c1+c2+…+c2013

查看答案和解析>>

科目: 来源: 题型:

椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,且经过点P(1,
2
2
).直线l1:y=k1x+m1与椭圆M交于A,C两点,直线l2:y=k2x+m2与椭圆M交于B,D两点,四边形ABCD是平行四边形.
(1)求椭圆M的方程;
(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;
(3)若平行四边形ABCD为菱形,求菱形ABCD面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

在数列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)对任意n∈N*成立,令bn=an+1-an,且{bn}是等比数列.
(1)求实数k的值;
(2)求数列{an}的通项公式;
(3)求和:Sn=b1+2b2+3b3+…nbn

查看答案和解析>>

同步练习册答案