相关习题
 0  212774  212782  212788  212792  212798  212800  212804  212810  212812  212818  212824  212828  212830  212834  212840  212842  212848  212852  212854  212858  212860  212864  212866  212868  212869  212870  212872  212873  212874  212876  212878  212882  212884  212888  212890  212894  212900  212902  212908  212912  212914  212918  212924  212930  212932  212938  212942  212944  212950  212954  212960  212968  266669 

科目: 来源: 题型:

已知cos(
π
6
+α)•cos(
π
3
-α)=-
1
4
,α∈(
π
3
π
2
),求:
(Ⅰ)sin2α;
(Ⅱ)tanα-
1
tanα

查看答案和解析>>

科目: 来源: 题型:

已知等差数列{an}的首项为10,公差为2,等比数列{bn}的首项为1,公比为2,n∈N*
(1)求数列{an}与{bn}的通项公式;
(2)设第n个正方形的边长为Cn=min{an,bn},求前n个正方形的面积之和Sn.(注:min{a,b}表示a与b的最小值.)

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b≥1)
过点P(2,1),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)直线的l的斜率为
1
2
,直线l与椭圆C交于A、B两点.求△PAB面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC、BD是过抛物线Γ焦点F的两条弦,且其焦点F(0,1),
AC
BD
=0
,点E为y轴上一点,记∠EFA=α,其中α为锐角.
①求抛物线Γ方程;
②如果使“蝴蝶形图案”的面积最小,求α的大小?

查看答案和解析>>

科目: 来源: 题型:

已知点F1、F2为双曲线C:x2-
y2
b2
=1(b>0)
的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.圆O的方程是x2+y2=b2
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求
PP1
PP2
的值;
(3)过圆O上任意一点Q(x0,y0)作圆O的切线l交双曲线C于A、B两点,AB中点为M,求证:|
AB
|=2|
OM
|

查看答案和解析>>

科目: 来源: 题型:

某校要从2名男同学和4名女同学中选出2人担任羽毛球比赛的志愿者工作,每名同学当选的机会均相等.
(Ⅰ)求当选的2名同学中恰有l名男同学的概率;
(Ⅱ)求当选的2名同学中至少有1名女同学的概率.

查看答案和解析>>

科目: 来源: 题型:

已知x>0,且x≠1,数列{an}的前n项和为Sn,它满足条件
xn-1
Sn
=1-
1
x
,数列{bn}中,bn=an•lgan
(1)求数列{bn}的前n项和Tn
(2)若对一切n∈N*都有bn<bn+1,求x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

抛物线C1:x2=4y在点A,B处的切线垂直相交于点P,直线AB与椭圆C2
x2
4
+
y2
2
=1相交于C,D两点.
(1)求抛物线C1的焦点F与椭圆C2的左焦点F1的距离;
(2)设点P到直线AB的距离为d,试问:是否存在直线AB,使得|AB|,d,|CD|成等比数列?若存在,求直线AB的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

设计一个算法,根据输入x的值,计算y=
3x-1x≥1
1-3xx<1
的值,写其程序并画出其流程图.

查看答案和解析>>

科目: 来源: 题型:

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
1
7
.现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取…直到袋中的球取完即终止.若摸出白球,则记2分,若摸出黑球,则记1分.每个球在每一次被取出的机会是等可能的.用ξ表示甲四次取球获得的分数之和.
(Ⅰ)求袋中原有白球的个数;
(Ⅱ)求随机变量ξ的概率分布列及期望Eξ.

查看答案和解析>>

同步练习册答案