相关习题
 0  212791  212799  212805  212809  212815  212817  212821  212827  212829  212835  212841  212845  212847  212851  212857  212859  212865  212869  212871  212875  212877  212881  212883  212885  212886  212887  212889  212890  212891  212893  212895  212899  212901  212905  212907  212911  212917  212919  212925  212929  212931  212935  212941  212947  212949  212955  212959  212961  212967  212971  212977  212985  266669 

科目: 来源: 题型:

已知a>0,b>0,且a2+b2=
9
2
,若a+b≤m恒成立,
(Ⅰ)求m的最小值;
(Ⅱ)若2|x-1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=sinx+acosx的图象经过点(-
π
3
,0).
(1)求实数a的值;
(2)设g(x)=[f(x)]2-2,求函数g(x)的最小正周期与单调递增区间.

查看答案和解析>>

科目: 来源: 题型:

甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是
2
5
,甲,丙两人同时不能被聘用的概率是
6
25
,乙,丙两人同时能被聘用的概率是
3
10
,且三人各自能否被聘用相互独立.
(1)求乙,丙两人各自能被聘用的概率;
(2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望).

查看答案和解析>>

科目: 来源: 题型:

将数列{an}中的所有项按每一行比上一行多两项的规则排列成如图数表,已知图中的第一列数a1,a2,a5…构成一个等差数列,记为数列{bn},且b2=4,b5=10,图中每一行正中间一个数a1,a3,a7…构成数列{cn},其前n项和为Sn
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若图中从第2行开始,每一行中的数按从左到右的顺序均成等比数列,且公比是同一个正数,已知a19=
5
2
,求Sn

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ax+blnx+c(a,b,c是常数)在x=e处的切线方程为(e-1)x+ey-e=0,且f(1)=0.
(Ⅰ)求常数a,b,c的值;
(Ⅱ)若函数g(x)=x2+mf(x)(m∈R)在区间(1,3)内不是单调函数,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥DC,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BC⊥平面PBD:
(Ⅱ)求直线AP与平面PDB所成角的正弦值;
(Ⅲ)设E为侧棱PC上异于端点的一点,
PE
PC
,试确定λ的值,使得二面角E-BD-P的余弦值为
6
3

查看答案和解析>>

科目: 来源: 题型:

已知△ABC中,角A,B,C的对边分别为a,b,c,若向量
m
=(cosB,2cos2
C
2
-1)与向量
n
=(2a-b,c)共线.
(1)求角C的大小;
(2)若c=2
3
,S△ABC=2
3
,求a,b的值.

查看答案和解析>>

科目: 来源: 题型:

如图,在棱长为a的正方体ABCD-A1B1C1D1中,点E是棱D1D的中点,点F在棱B1B上,且满足B1F=2FB.
(1)求证:EF⊥A1C1
(2)在棱C1C上确定一点G,使A,E,G,F四点共面,并求此时C1G的长;
(3)求平面AEF与平面ABCD所成二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

在等比数列{an}中,己知a1=2,a4=16.
(1)求数列{an}的通项公式;
(2)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及数列{anbn}前n项和Sn

查看答案和解析>>

科目: 来源: 题型:

某商场为吸引顾客消费推出一项促销活动.活动规则如下:顾客消费额每满100元就可抽一次奖,例如:顾客消费额为299元可抽两次奖,所得奖金金额是两次两次抽奖获得的奖金金额的和.顾客每抽一次奖,得100元奖金的概率为
1
10
,得50元奖金的概率为
1
5
,得10元奖金的概率为
7
10

(1)如果顾客恰好消费了100元,并按规则参与抽奖活动,求该顾客得到的奖金金额不低于20元的概率;
(2)假设某位顾客消费额为230元,并按规则参与抽奖活动,所获得的奖金金额为X(元),求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案