相关习题
 0  212793  212801  212807  212811  212817  212819  212823  212829  212831  212837  212843  212847  212849  212853  212859  212861  212867  212871  212873  212877  212879  212883  212885  212887  212888  212889  212891  212892  212893  212895  212897  212901  212903  212907  212909  212913  212919  212921  212927  212931  212933  212937  212943  212949  212951  212957  212961  212963  212969  212973  212979  212987  266669 

科目: 来源: 题型:

已知向量
m
=(
3
sinx,sinx),
n
=(cosx,sinx),函数f(x)=
m
n

(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=
3
2
,a=2,b+c=3,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
1
x
+lnx-1
,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)是否存在实数x0∈(0,+∞),使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由;
(Ⅲ)若实数m,n满足m>0,n>0,求证:nnem≥mnen

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=lnx+x2-ax(a∈R).
(Ⅰ)当a=3时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1∈(0,1],求证:f(x1)-f(x2)≥-
3
4
+ln2;
(Ⅲ)设g(x)=f(x)+2ln
ax+2
6
x
,对于任意a∈(2,4),总存在x∈[
3
2
,2]
,使g(x)>k(4-a2)成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为(
2
,0),离心率为
6
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C相交于A,B两点,且以AB为直径的圆经过原点O,求证:点O到直线AB的距离为定值;
(Ⅲ)在(Ⅱ)的条件下,求△OAB面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ex-1-x.
(Ⅰ)求f(x)的最小值;
(Ⅱ)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设g(x)=(f′(x)+1)(x2-1),试问函数g(x)在(1,+∞)上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

在一段笔直的斜坡AC上竖立两根高16米的电杆AB,CD,过B,D架设一条10万伏高压电缆线.假设电缆线BD呈抛物线形状,现以B为原点,AB所在直线为Y轴建立如图所示的平面直角坐标系,经观测发现视线AD恰与电缆线相切于点D(m,n).
(1)求抛物线BD的方程;
(2)根据国家有关规定,高压电缆周围10米内为不安全区域,问当有一个身高1.8米的人在这段斜坡上走动时,这根高压电缆是否会对这个人的安全构成威胁?

查看答案和解析>>

科目: 来源: 题型:

如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为3
2
,点M,N分别在PA,BD上,且
PM
PA
=
BN
BD
=
1
3

(1)求证:MN⊥AD;
(2)求MN与平面PAD所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

已知长方体的一条对角线与长方体的两条棱所成角为45°和60°,且体积为4,求长方体的表面积.

查看答案和解析>>

科目: 来源: 题型:

在直三棱柱(侧面垂直于底面的三棱柱)ABC-A1B1C1中,以AB、BC为邻边作平行四边形ABCD,AB⊥BC,AB=BC=AA1记线段CD、A1B1的中心分别是P、E连接AE、BP,得到如图所示的几何体
(1)若AA1=a,图甲给出了异面直线之间的距离的一种算法框图(其中异面直线的公垂线是指两异面直线都垂直且相交的直线)请利用这种方法求异面直线AE和BP之间的距离;
(2)若AA1=2,在线段A1P上是否存在一点F,使得平面AFB⊥平面A1BP?若存在,指出点F的位置,并证明你的结论;若不存在,请说明理由;
(3)若AA1=a,在线段A1C上有一M,过点M做垂直于平面A1ACC1的直线l,与直三棱柱ABC-A1B1C1的其他侧面相交于N,过CM=x,MN=y,求函数y=f(x)的解析式,并据此求出线段MN的长度最大值.

查看答案和解析>>

科目: 来源: 题型:

如图所示,在直角坐标平面上的矩形OABC中,|OA|=2,|OC|=
3
,点P,Q满足
OP
OA
AQ
=1(1-λ)
AB
(λ∈R)
,点D是C关于原点的对称点,直线DP与CQ相交于点M.
(1)求点M的轨迹方程;
(2)若过点F(-1,0)且斜率不为零的直线与点M的轨迹相交于G,H两点,直线AG和AH与定直线l:x=-4分别相交于点R,S,试判断以RS为直径的圆是否经过点F?说明理由.

查看答案和解析>>

同步练习册答案