相关习题
 0  212807  212815  212821  212825  212831  212833  212837  212843  212845  212851  212857  212861  212863  212867  212873  212875  212881  212885  212887  212891  212893  212897  212899  212901  212902  212903  212905  212906  212907  212909  212911  212915  212917  212921  212923  212927  212933  212935  212941  212945  212947  212951  212957  212963  212965  212971  212975  212977  212983  212987  212993  213001  266669 

科目: 来源: 题型:

设实数x,y满足
x≤y
y≤10-2x
x≥1
,向量
a
=(2x-y,m),
b
=(-1,1).若
a
b
,则实数m的最大值为
 

查看答案和解析>>

科目: 来源: 题型:

甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为
2
3
,乙在每局中获胜的概率为
1
3
,且各局胜负相互独立,比赛停止时一共已打ξ局:
(Ⅰ)列出随机变量ξ的分布列;
(Ⅱ)求ξ的期望值Eξ.

查看答案和解析>>

科目: 来源: 题型:

某同学在寒假期间进行社会实践活动,对[25,55]岁的人群随机抽取行人进行了一次生活习惯是否符合环保观念的调查,若生活习惯符合环保观念的称为“环保族”,否则称为“非环保族”,得到如下统计表和各年龄段人数的频率分布直方图:
组数 分组 环保数的人数 占本组的频率
第一组 [25,30) 120 0.6
第二组 [30,35) 195 p
第三组 [35,40) 100 0.5
第四组 [40,45) a 0.4
第五组 [45,50) 30 0.3
第六组 [50,55] 15 0.3
(Ⅰ)补全频率分布直方图,并求n、a、p的值;
(Ⅱ)从[35,45)岁年龄段的“环保族”中采用分层抽样法抽取16人参加户外环保体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[35,40)岁的人数为X,求随机变量X的分布列和数学期望EX.

查看答案和解析>>

科目: 来源: 题型:

已知集合Tn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Tn,定义;
AB
=(b1-a1b2-a2,…,bn-an)
,λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)当n=5时,设A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)证明:若A,B,C∈Tn,且?λ>0,使
AB
BC
,则d(A,B)+d(B,C)=d(A,C);
(Ⅲ)记I=(1,1,…,1)∈Tn.若A,B∈Tn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目: 来源: 题型:

某校高一年级共有320人,为调查高一年级学生每天晚自习自主支配学习时间(指除了完成老师布置的作业后学生根据自己的需要进行学习的时间)情况,学校采用随机抽样的方法从高一学生中抽取了n名学生进行问卷调查.根据问卷得到了这n名学生每天晚自习自主支配学习时间的数据(单位:分钟),按照以下区间分为七组:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到频率分布直方图如图.已知抽取的学生中每天晚自习自主支配学习时间低于20分钟的人数是4人.
(1)求n的值;
(2)若高一全体学生平均每天晚自习自主支配学习时间少于45分钟,则学校需要减少作业量.根据以上抽样调查数据,学校是否需要减少作业量?(注:统计方法中,同一组数据常用该组区间的中点值作为代表)

查看答案和解析>>

科目: 来源: 题型:

如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=
π
2
,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(Ⅰ)求证:AG∥平面BDE;
(Ⅱ)求:二面角G-DE-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:

设各项均为非负数的数列{an}的为前n项和Sn=λnan(a1≠a2,λ∈R).
(1)求实数λ的值;
(2)求数列{an}的通项公式(用n,a2表示).
(3)证明:当m+l=2p(m,l,p∈N*)时,Sm•Sl≤Sp2

查看答案和解析>>

科目: 来源: 题型:

一个袋子装有大小完全相同的9个球,其中5个红球,编号分别为1,2,3,4,5;4个白球,编号分别为1,2,3,4.
(1)从袋中任意取出3个球,求取出的3个球的编号为连续的自然数的概率;
(2)从袋中任意取出4个球,记ξ为取出的4个球中编号的最大值,求ξ的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:

已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}
(1)若A∩B=A∪B,求a的值;
(2)若A∩B=A∩C≠∅,求a的值.

查看答案和解析>>

科目: 来源: 题型:

设等差数列{an}的前n项和为Sn.且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),求数列{
1
bn
}
的前n项和Tn

查看答案和解析>>

同步练习册答案