相关习题
 0  212850  212858  212864  212868  212874  212876  212880  212886  212888  212894  212900  212904  212906  212910  212916  212918  212924  212928  212930  212934  212936  212940  212942  212944  212945  212946  212948  212949  212950  212952  212954  212958  212960  212964  212966  212970  212976  212978  212984  212988  212990  212994  213000  213006  213008  213014  213018  213020  213026  213030  213036  213044  266669 

科目: 来源: 题型:

已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)的最小值为-1,且关于x的一元二次不等式ax2+bx+c>0的解集为(-∞,-2)∪(0,+∞).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设F(x)=tf(x)-x-3其中t≥0,求函数F(x)在x∈[-
3
2
,2]
时的最大值H(t)
(Ⅲ)若g(x)=f(x)+k(k为实数),对任意m∈[0,+∞),总存在n∈[0,+∞)使得g(m)=H(n)成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

如图,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC=
1
2
AD
.梯形ABCD所在平面外有一点P,满足PA⊥平面ABCD,PA=AB.
(1)求证:平面PCD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出E的位置并证明;若不存在请说明理由;
【理】(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:

如图,在等腰梯形ABCD中,AD∥BC,AB=BC=CD=
1
2
AD=2,O为AD上一点,且AO=1,平面外两点P、E满足,AE=1,EA⊥AB,EB⊥BD,PO∥EA.
(1)求证:EA⊥平面ABCD;
(2)求平面AED与平面BED夹角的余弦值;
(3)若BE∥平面PCD,求PO的长.

查看答案和解析>>

科目: 来源: 题型:

如图直角梯形OABC中,∠COA=∠OAB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分别以OC,OA,OS为x轴、y轴、z轴建立直角坐标系O-xyz.
(Ⅰ)求
SC
OB
夹角的余弦值;
(Ⅱ)求OC与平面SBC夹角的正弦值;
(Ⅲ)求二面角S-BC-O.

查看答案和解析>>

科目: 来源: 题型:

在直角梯形EFCB中,EF∥BC,EF=BE=
1
2
BC=2,∠BEF=90°,点A是平面BEF外一点,AE⊥面BCFE,且AE=BE,若G、M分别是BC、AG的中点,
(1)求证:AE∥平面BMF;
(2)求二面角G-MF-C的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}满足a1=1,an=
4an-1
2an-1+1
(n≥2)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:
n
k=1
ak
3n-2
2

查看答案和解析>>

科目: 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的
中点.
(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,试
确定点M的位置,使二面角M-BQ-C大小为60°,并求出
PM
PC
的值.

查看答案和解析>>

科目: 来源: 题型:

如图,ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF=3.
(1)求证:AC⊥平面BDE;
(2)求直线AB与平面BEF所成的角的正弦值;
(3)线段BD上是否存在点M,使得AM∥平面BEF?若存在,试确定点M的位置;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

在如图所示的空间几何体中,平面ACD⊥平面ABC,△ACD与△ACB是边长为2的等边三角形,BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)求二面角E-BC-A的余弦值.

查看答案和解析>>

科目: 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PB⊥BC,PD⊥DC,且PC=
3

(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角B-PD-C的余弦值;
(Ⅲ)棱PD上是否存在一点E,使直线EC与平面BCD所成的角是30°?若存在,求PE的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案